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 Abstract 

This paper deals with the minimization of a generalized Pareto problem defined on complete normed spaces. Some 

sufficient optimality conditions are given. Some results on weak and strong duality are derived.  
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1. Introduction 

Let 𝑋, 𝑌 and 𝑍 be three complete normed linear spaces, 𝑈 and 𝑉 are subsets of 𝑋 and 𝑍 respectively. 

Consider the following mathematical programming problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑔(𝑢): 𝑢 ∈ 𝑈, −ℎ(𝑢) ∈ 𝑉}, 

where 𝑔: 𝑋 → 𝑌 and ℎ: 𝑋 → 𝑍. 

Minami [1] considered an ordinary multi-objective program on a Banach space, in which objective functions and 

constraint functions were locally Lipschitzian but not always convex, and derived Kuhn-Tucker forms given by 

Clarke’s generalized gradients [2] as necessary conditions for weak Pareto optimum. 

The above mathematical programming problem was studied by Clarke  [3], Minami [4], Craven [5], Reiland [6], 

Lee [7], Bhatia et al. [8], Giorgi et al. [9], Mishra et al. [10], Liu [11], Mishra [12] and Kim [13], when 𝑌 and 𝑍 

are finite-dimensional normed linear spaces, 𝑔 and ℎ are locally Lipschitz functions. 

Abdouni et al. [14] and Coladas et al. [15] were considered the Lipschitz infinite dimensional cases. 

Brandao et al. [16] studied multi-objective mathematical programming problems with non-differentiable strongly 

compact Lipschitz functions defined on general complete normed linear spaces. 

Brandao et al. [16] established KKT type conditions and Mond-Weir type duality results under a Slater-type 

condition and an invexity notion for mappings defined between complete normed linear spaces. 

In this paper, we extend the concept of type 𝐼 functions [17], pseudo-Type 𝐼 and quasi-Type 𝐼 functions [18], 

quasipseudo-Type 𝐼 and pseudoquasi-Type 𝐼 [19] to the context of complete normed linear spaces and establish the 

sufficiency of KKT type optimality conditions under weaker invexity assumptions than that of Brandao et al. [16]. 

We also obtain various duality results under aforesaid assumptions.  

This paper has different sections. Section 2 consists some basic definitions and preliminary results. In section 3, we 

establish sufficient optimality conditions for generalized Pareto minimization problem defined on complete normed 
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spaces. In section 4, we derive some results on weak and strong duality. Section 5 consists conclusions on our 

results. 

2. Definitions and Preliminaries 

The following definitions are from [3]. 

Definition 2.1 A normed space 𝑋 is called a complete normed space if every Cauchy sequence in 𝑋 is convergent.  

Definition 2.2 A function 𝑔 ∶ 𝑋 → 𝑅 is said to be locally Lipschitz at 𝑥 ∈ 𝑋, if and only if there exists a positive 

number 𝐿 and a neighborhood 𝑁 of 𝑥 such that, for any 𝑦, 𝑧 ∈ 𝑁, one has 

|𝑔(𝑦) − 𝑔(𝑧)| ≤ 𝐿‖𝑦 − 𝑧‖. 

The function 𝑔 is said to be Lipschitz on 𝑋, if and only if the above condition is satisfied for all 𝑥 ∈ 𝑋. 

Definition 2.3 Let  𝑔 ∶ 𝑋 → 𝑅  be a locally Lipschitz function at 𝑥 ∈ 𝑋. The Clarke generalized directional 

derivative of 𝑔 at 𝑥 ∈ 𝑋 in the direction of vector 𝑣 is denoted by 𝑔𝑜(𝑥; 𝑣) and is defined as  

𝑔𝑜(𝑥, 𝑣) = lim sup 
𝑦→𝑥
𝑡↓0

𝑔(𝑦+𝑡𝑣)−𝑔(𝑦)

𝑡
.  

Definition 2.4 Let  𝑔 ∶ 𝑋 → 𝑅  be a locally Lipschitz function at 𝑥 ∈ 𝑋. The generalized gradient of 𝑔 at 𝑥 ∈ 𝑋  is 

denoted by 𝜕𝑔(𝑥) and is defined as  

𝜕𝑔(𝑥) = {𝑥̂ ∈ 𝑋̂ ∶ 𝑔𝑜(𝑥, 𝑣) ≥ 〈𝑥̂, 𝑣〉, ∀ 𝑣 ∈ 𝑋}. 

where 𝑋̂ is the topological dual of 𝑋 and 〈. , . 〉 is the duality pairing. 

Definition 2.5 Let 𝑈(≠ ∅) ⊆ 𝑋. The distance function 𝑑𝑈(. ): 𝑋 → 𝑅 is defined by 

𝑑𝑈(𝑥) =  𝑖𝑛𝑓{‖𝑥 − 𝑣‖: 𝑣 ∈ 𝑈} 

Definition 2.6 A vector 𝑥 ∈ 𝑋 is said to be tangent to 𝑈 at  𝑢 ∈ 𝑈 if  

𝑑𝑈
0 (𝑢, 𝑥) = 0 

The Clarke tangent cone of 𝑈 at 𝑢 is denoted by 𝑇𝑈(𝑢) and is defined as 

𝑇𝑈(𝑢) = {𝑥 ∈ 𝑋: 𝑑𝑈
0 (𝑢, 𝑥) = 0}, 

Where 𝑑𝑈 denotes the distance function related to 𝑈. 

Definition 2.7 [16] A function 𝑓: 𝑋 → 𝑍 is said to be strongly compact Lipschitzian 𝑥 ∈ 𝑋 if there exist a 

multifunction 𝑖 ∶ 𝑋 → 𝑐𝑜𝑚𝑝(𝐺) [where 𝑐𝑜𝑚𝑝(𝐺) is the set of all normed compact subsets of 𝐺] and a function 𝑟 ∶

𝑋 × 𝑋 → 𝑅+ such that 

(𝑎) lim
𝑦→𝑥
𝑣→0

𝑟(𝑦, 𝑣) = 0, 
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(𝑏) ∃ 𝜆 > 0  s.t.  𝑡−1{𝑓(𝑦 + 𝑡𝑣) − 𝑓(𝑦)} ∈ 𝑖(𝑑) + ‖𝑣‖𝑟(𝑦, 𝑡)𝐵𝑍, ∀ 𝑦 ∈ 𝑥 + 𝜆𝐵𝑍  and 𝑡 ∈ (0, 𝜆), where 𝐵𝑍 denotes 

the closed unit ball around the origin of 𝑍, 

(𝑐) 𝑖(0) = {0} and 𝑖 is upper semicontinuous. 

Note 2.1 If 𝑍 is finite dimensional complete normed linear space, then 𝑓 is strongly compact Lipschitzian 𝑥 if and 

only if it is locally Lipschitz near 𝑥. 

 If 𝑓 is, then for all 𝑧̂ ∈ 𝑍,̂ (𝑧̂𝑜𝑔)(𝑥) = 〈𝑧̂, 𝑓(𝑥)〉 is locally Lipschitz. 

Let 𝑊 and 𝑉 are subsets of 𝑌 and 𝑍 respectively. Both subsets denote pointed closed convex cones with non-empty 

interior. 

Let 𝑊̂ and 𝑉̂ are dual cones of 𝑊 and 𝑉 respectively. The cone 𝑊 induces a partial order relation ≤ on 𝑌 defined by 

𝑤1 ≤ 𝑤2 if 𝑤2 − 𝑤1 ∈ 𝑊 

𝑤1 < 𝑤2 if 𝑤2 − 𝑤1 ∈ 𝑖𝑛𝑡 𝑊 

The negation of 𝑤1 ≤ 𝑤2 is 𝑤1 ≥ 𝑤2. Similarly the negation of 𝑤1 < 𝑤2 is 𝑤1 > 𝑤2. The cone 𝑉 induces a partial 

order relation ≤ on 𝑍. 

Definition 2.8 [20]  A locally Lipschitz real-valued function 𝑔 ∶ 𝑋 → 𝑅  is said to be invex function with respect to 

𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈ 𝑈, there exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

𝑔(𝑤) − 𝑔(𝑢) ≥ 𝑔0(𝑢;  𝜃(𝑤, 𝑢)).      

If above inequality holds for each 𝑢, 𝑤 ∈ 𝑈, then 𝑔 is invex on 𝑈. 

Definition 2.9 The functions 𝑔 ∶ 𝑋 → 𝑌 and ℎ ∶ 𝑋 → 𝑍 are invex, if (𝑤̂𝑜𝑔) and (𝑣̂𝑜ℎ) are invex functions, for each 

𝑤̂ ∈ 𝑊̂ and 𝑣̂ ∈ 𝑉.̂ 

Definition 2.10 [17] (𝑔, ℎ) is said to be Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈ 𝑈, there exists 

𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

𝑔(𝑤) − 𝑔(𝑢) ≥ 𝑔0(𝑢;  𝜃(𝑤, 𝑢)),          

         −ℎ(𝑢) ≥ ℎ0(𝑢;  𝜃(𝑤, 𝑢)).       

Definition 2.11 [18] (𝑔, ℎ) is said to be quasi-Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈ 𝑈, there 

exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

𝑔(𝑤) ≤ 𝑔(𝑢) ⟹ 𝑔0(𝑢;  𝜃(𝑤, 𝑢)) ≤ 0,          

         −ℎ(𝑢) ≤ 0 ⟹ ℎ0(𝑢;  𝜃(𝑤, 𝑢)) ≤ 0.       

Definition 2.12 [18] (𝑔, ℎ) is said to be pseudo-Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈ 𝑈, there 

exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

       𝑔0(𝑢;  𝜃(𝑤, 𝑢)) ≥ 0 ⟹ 𝑔(𝑤) ≥ 𝑔(𝑢),          
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ℎ0(𝑢;  𝜃(𝑤, 𝑢)) ≥ 0 ⟹ −ℎ(𝑢) ≥ 0.       

Definition 2.13 [19] (𝑔, ℎ) is said to be quasipseudo-Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈

𝑈, there exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

                                                  𝑔(𝑤) ≤ 𝑔(𝑢) ⟹ 𝑔0(𝑢;  𝜃(𝑤, 𝑢)) ≤ 0,          

ℎ0(𝑢;  𝜃(𝑤, 𝑢)) ≥ 0 ⟹ −ℎ(𝑢) ≥ 0.       

Definition 2.14 [19] (𝑔, ℎ) is said to be quasistrictlypseudo-Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 

𝑤 ∈ 𝑈, there exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

                                                  𝑔(𝑤) ≤ 𝑔(𝑢) ⟹ 𝑔0(𝑢;  𝜃(𝑤, 𝑢)) ≤ 0,          

ℎ0(𝑢;  𝜃(𝑤, 𝑢)) ≥ 0 ⟹ −ℎ(𝑢) > 0.       

Definition 2.15 [19] (𝑔, ℎ) is said to be pseudoquasi-Type 𝐼 function with respect to 𝑈 at 𝑢 ∈ 𝑈 if for each 𝑤 ∈

𝑈, there exists 𝜃(𝑤, 𝑢) ∈ 𝑇𝑈(𝑢) such that 

       𝑔0(𝑢;  𝜃(𝑤, 𝑢)) ≥ 0 ⟹ 𝑔(𝑤) ≥ 𝑔(𝑢),          

−ℎ(𝑢) ≤ 0 ⟹ ℎ0(𝑢;  𝜃(𝑤, 𝑢)) ≤ 0.       

The functions 𝑔 ∶ 𝑋 → 𝑌 and ℎ ∶ 𝑋 → 𝑍 are Type 𝐼, quasi-Type 𝐼, pseudo-Type 𝐼, quasipseudo − Type 𝐼 and 

pseudoquasi-Type 𝐼 at 𝑢 ∈ 𝑈 if (𝑤̂𝑜𝑔) and (𝑣̂𝑜ℎ) are Type 𝐼, quasi-Type 𝐼, pseudo-Type 𝐼, quasipseudo − Type 𝐼 

and pseudoquasi-Type 𝐼 respectively, for each 𝑤̂ ∈ 𝑊̂ and 𝑣̂ ∈ 𝑉.̂ 

3. Optimality Conditions 

We consider the following generalized Pareto minimization problem (𝐺𝑃𝑀𝑃): 

      𝑚𝑖𝑛{𝑔(𝑢): 𝑢 ∈ 𝑈, −ℎ(𝑢) ∈ 𝑉}                                                                       (𝐺𝑃𝑀𝑃)  

Where 𝑔 ∶ 𝑋 → 𝑌 and ℎ ∶ 𝑋 → 𝑍 are strongly compact Lipschitzian at 𝑢̅ ∈ 𝑋 and 𝑈(≠ ∅) ⊆ 𝑋. The subset 𝑉 of 𝑍 is 

a pointed closed convex cone with non-empty interior. 

Let 𝑆 is the non-empty set of all feasible solutions of (𝐺𝑃𝑀𝑃), defined by 

 𝑆 = {𝑢 ∈ 𝑈: ℎ(𝑢) ≤ 0} 

Definition 3.1 A feasible solution 𝑢̂ ∈ 𝑆 is a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃), if there is no 𝑢 ∈ 𝑆 such 

that 𝑔(𝑢) < 𝑔(𝑢̂). 

Proposition 3.1 [14] If 𝑢̂ ∈ 𝑆 is a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃), then then there exists a non-zero pair 

of vectors (𝑤̂, 𝑣̂) ∈ 𝑊̂ × 𝑉̂ such that, for some  𝛼 > 0, 

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑢̂), 

〈𝑣̂, ℎ(𝑢̂)〉 = 0 

We adopt the following Slater-type constraint qualification: 
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Definition 3.2 The restrictions of (𝐺𝑃𝑀𝑃) satisfy the Slater condition if there exists 𝑢̅ ∈ 𝑈 such that ℎ(𝑢̅) < 0. 

Theorem 3.1 (Sufficient optimality condition) Suppose that there exist 𝑢̂ ∈ 𝑆 and 𝑤̂ ∈ 𝑊̂, 𝑤̂ ≠ 0, 𝑣̂ ∈ 𝑉̂, such that, 

for some 𝛼 > 0, 

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑢̂)                                                                                         (1) 

〈𝑣̂, ℎ(𝑢̂)〉 = 0                                                                                                                        (2) 

If (𝑤̂𝑜𝑔, 𝑣̂𝑜ℎ) is Type 𝐼 functionwith respect to 𝑈 at 𝑢̂ ∈ 𝑆 then 𝑢̂ is a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃). 

Proof We prove the theorem by contradiction. 

Let 𝑢̂ is not a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃), then ∃ 𝑢̅ ∈ 𝑆 such that 𝑔(𝑢̅) < 𝑔(𝑢̂). 

𝑖. 𝑒.   𝑔(𝑢̅) − 𝑔(𝑢̂) < 0. 

Since 𝑤̂ ≠ 0, we have 

〈𝑤̂, 𝑔(𝑢̅) − 𝑔(𝑢̂)〉 < 0                                                                                                      (3)  

If 𝑔 is Type 𝐼 function at 𝑢̂ then there exists 𝜃(𝑢̅, 𝑢̂) ∈ 𝑇𝑈(𝑢̂) such that 

(𝑤̂𝑜𝑔)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) ≤ 〈𝑤̂, 𝑔(𝑢̅) − 𝑔(𝑢̂)〉                                                                   (4) 

using (3) in (4), we get 

(𝑤̂𝑜𝑔)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) < 0                                                                                                 (5) 

If ℎ is Type 𝐼 function at 𝑢̂ then there exists 𝜃(𝑢̅, 𝑢̂) ∈ 𝑇𝑈(𝑢̂) such that 

(𝑣̂𝑜ℎ)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) ≤ 〈𝑣̂, −ℎ(𝑢̂)〉 

Using (2) in above inequality, we find 

(𝑣̂𝑜ℎ)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) ≤ 0                                                                                                     (6) 

From (5) and (6), we find 

(𝑤̂𝑜𝑔)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) + (𝑣̂𝑜ℎ)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) < 0                                                           (7) 

From (1), we have 

0 ≤ (𝑤̂𝑜𝑔)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) + (𝑣̂𝑜ℎ)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂))  

which contradicts (7). 

Hence, 𝑢̂ is a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃) 

Theorem 3.2 Suppose that there exist 𝑢̂ ∈ 𝑆 and 𝑤̂ ∈ 𝑊̂, 𝑤̂ ≠ 0, 𝑣̂ ∈ 𝑉̂, such that, for some 𝛼 > 0, 

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑢̂)                                                                                         (1) 
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〈𝑣̂, ℎ(𝑢̂)〉 = 0                                                                                                                        (2) 

If (𝑔, ℎ) is pseudoquasi-Type 𝐼 function with respect to 𝑈 at 𝑢̂ for the same 𝜃(𝑢̅, 𝑢̂) ∈ 𝑇𝑈(𝑢̂), then 𝑢̂ is a weak 

Pareto-optimal solution for (𝐺𝑃𝑀𝑃). 

Proof Let (𝑔, ℎ) is pseudoquasi-Type 𝐼 function with respect to 𝑈 at 𝑢̂ for the same  𝜃(𝑢̅, 𝑢̂) ∈ 𝑇𝑈(𝑢̂),then by 

definition, we have 

𝑔0(𝑢̂;  𝜃(𝑢̅, 𝑢̂)) ≥ 0 ⟹ 𝑔(𝑢̅) ≥ 𝑔(𝑢̂)                                                                           (3)  

−ℎ(𝑢̂) ≤ 0 ⟹ ℎ0(𝑢̂;  𝜃(𝑢̅, 𝑢̂)) ≤ 0                                                                              (4)  

Since 〈𝑣̂, ℎ(𝑢̂)〉 = 0, we obtain 

(𝑣̂𝑜ℎ)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) ≤ 0                                                                                                    (5) 

From inequality (1), we obtain 

(𝑤̂𝑜𝑔)0(𝑢̂, 𝜃(𝑢̅, 𝑢̂)) ≥ 0                                                                                                    (6) 

Which implies that 

〈𝑤̂, 𝑔(𝑢̅) − 𝑔(𝑢̂)〉 ≥ 0                                                                                                       (7) 

Since 𝑤̂ ≠ 0, therefore we find the following. 

𝑔(𝑢̅) > 𝑔(𝑢̂) 

Hence, 𝑢̂ is a weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃). 

Theorem 3.3 Suppose that there exist 𝑢̂ ∈ 𝑆 and 𝑤̂ ∈ 𝑊̂, 𝑤̂ ≠ 0, 𝑣̂ ∈ 𝑉̂, such that, for some 𝛼 > 0, 

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑢̂)                                                                                         (1) 

〈𝑣̂, ℎ(𝑢̂)〉 = 0                                                                                                                        (2) 

If (𝑔, ℎ) is quasistrictly-pseudo-Type 𝐼 function with respect to 𝑈 at 𝑢̂ for the same 𝜃(𝑢̅, 𝑢̂) ∈ 𝑇𝑈(𝑢̂), then 𝑢̂ is a 

weak Pareto-optimal solution for (𝐺𝑃𝑀𝑃). 

The proof of this theorem is very easy and hence omitted. 

4. Duality Result 

We assume the following dual of (𝐺𝑃𝑀𝑃): 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑔(𝑥),                                                                                                                     (𝐷) 

subject to constraints:  𝑥 ∈ 𝑈, 𝑤̂ ∈ 𝑊̂, 𝑤̂ ≠ 0, 𝑣̂ ∈ 𝑉̂, 〈𝑣̂, ℎ(𝑥)〉 ≥ 0,  

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑥) 

We establish some results on weak and strong duality between problems (𝐺𝑃𝑀𝑃) and (𝐷). 
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Theorem 4.1 (Weak Duality) Let 𝑠 and (𝑥, 𝑤̂, 𝑣̂) be feasible solutions for problems (𝐺𝑃𝑀𝑃) and (𝐷), respectively. 

If (𝑔, ℎ) is Type 𝐼 function with respect to 𝑈 at 𝑥 ∈ 𝑈, for the same 𝜃, then 

𝑔(𝑠) < 𝑔(𝑥) 

Proof  We prove the result by contradiction. 

Let 𝑠̂ and (𝑥, 𝑤̂, 𝑣̂) are feasible solutions for problems (𝐺𝑃𝑀𝑃) and (𝐷), respectively and 𝑔(𝑠̂) < 𝑔(𝑥).  

𝑖. 𝑒.  𝑔(𝑠̂) − 𝑔(𝑥) < 0                                                                                                         (1) 

Since 𝑤̂ ≠ 0, we find 

〈𝑤̂, 𝑔(𝑠̂) − 𝑔(𝑥)〉 < 0                                                                                                         (2) 

Since (𝑔, ℎ) is Type 𝐼 function with respect to 𝑈 at 𝑠̂, ∃ 𝜃(𝑠̂, 𝑥) ∈ 𝑇𝑈(𝑥) such that  

(𝑤̂𝑜𝑔)0(𝑥, 𝜃(𝑠̂, 𝑥)) ≤ 〈𝑤̂, 𝑔(𝑠̂) − 𝑔(𝑥)〉                                                                      (3) 

Using (2) in (3), we find 

(𝑤̂𝑜𝑔)0(𝑥, 𝜃(𝑠̂, 𝑥)) < 0                                                                                                    (4) 

Since 〈𝑣̂, ℎ(𝑥)〉 ≥ 0, we find 

−〈𝑣̂, ℎ(𝑥)〉 ≤ 0 ⇒ (𝑣̂𝑜ℎ)0(𝑥, 𝜃(𝑠̂, 𝑥)) ≤ 0                                                                 (5) 

From (4) and (5), we find 

(𝑤̂𝑜𝑔)0(𝑥, 𝜃(𝑠̂, 𝑥)) + (𝑣̂𝑜ℎ)0(𝑥, 𝜃(𝑠̂, 𝑥)) < 0                                                          (6) 

From (𝐷), we have 

0 ∈ 𝜕(𝑤̂𝑜𝑔 + 𝑣̂𝑜ℎ + 𝛼𝑑𝑈)(𝑥) 

Hence, we find the following. 

0 ≤ (𝑤̂𝑜𝑔)0(𝑥, 𝜃(𝑠̂, 𝑥)) + (𝑣̂𝑜ℎ)0(𝑥, 𝜃(𝑠̂, 𝑥))                                                             (7) 

(7) contradicts (6). 

Hence, 𝑔(𝑠) < 𝑔(𝑥). Which completes the proof. 

Theorem 4.2 (Weak Duality) Let 𝑠 and (𝑥, 𝑤̂, 𝑣̂) be feasible solutions for problems (𝐺𝑃𝑀𝑃) and (𝐷), respectively. 

If (𝑔, ℎ) is pseudoquasi-Type 𝐼 function with respect to 𝑈 at 𝑥, for the same 𝜃, then 

𝑔(𝑠) < 𝑔(𝑥) 

proof of this theorem is very easy and hence omitted. 

Theorem 4.3 (Weak Duality) Let 𝑠 and (𝑥, 𝑤̂, 𝑣̂) be feasible solutions for problems (𝐺𝑃𝑀𝑃) and (𝐷), respectively. 

If (𝑔, ℎ) is quasistrictly-pseudo-Type 𝐼 function with respect to 𝑈 at 𝑥, for the same 𝜃, then 
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𝑔(𝑠) < 𝑔(𝑥) 

The proof of this theorem is very easy and hence omitted. 

Theorem 4.4 (Strong Duality) If (𝑔, ℎ) is Type 𝐼 function at all feasible points 𝑠 of (𝐺𝑃𝑀𝑃) with respect to 𝑈 and 

assume that the restrictions of Problem (𝐺𝑃𝑀𝑃) satisfy the Slater condition. If 𝑢̂ is a weak Pareto-optimal solution 

of (𝐺𝑃𝑀𝑃), then there exists (𝑤̅̂, 𝑣̅̂) ∈ 𝑊̂ × 𝑉̂ such that 〈𝑣̅̂, ℎ(𝑢̂)〉 = 0, (𝑢̂, 𝑤̅̂, 𝑣̅̂) is a weak Pareto-optimal solution 

for (𝐷), and the objective values of the problems (𝐺𝑃𝑀𝑃) and (𝐷) are equal. 

 Proof Since the restrictions of Problem (𝐺𝑃𝑀𝑃) satisfy the Slater condition, therefore from Proposition (3.1), ∃ 

𝑤̅̂, 𝑣̅̂ such that 〈𝑣̅̂, ℎ(𝑢̂)〉 = 0 and  (𝑢̂, 𝑤̅̂, 𝑣̅̂) is feasible for (𝐷).  

 Let the feasible solution (𝑢̂, 𝑤̅̂, 𝑣̅̂) is not an optimal solution for (𝐷), therefore there exists a feasible solution 

(𝑢, 𝑤̂, 𝑣̂) for (𝐷) such that 𝑔(𝑢) > 𝑔(𝑢̂). Which is a contradiction of Theorem (4.1). 

Hence (𝑢̂, 𝑤̅̂, 𝑣̅̂) is a weak Pareto-optimal solution for (𝐷). It is obvious that the objective function values of 

problems (𝐺𝑃𝑀𝑃) and (𝐷) are equal at their respective weak Pareto-optimal solutions. 

Theorem 4.5 (Strong Duality) If (𝑔, ℎ) is pseudoquasi-Type 𝐼 function at all feasible points 𝑠 of (𝐺𝑃𝑀𝑃) with 

respect to 𝑈 and assume that the restrictions of Problem (𝐺𝑃𝑀𝑃) satisfy the Slater condition. If 𝑢̂ is a weak Pareto-

optimal solution of (𝐺𝑃𝑀𝑃), then there exists (𝑤̅̂, 𝑣̅̂) ∈ 𝑊̂ × 𝑉̂ such that  

〈𝑣̅̂, ℎ(𝑢̂)〉 = 0, (𝑢̂, 𝑤̅̂, 𝑣̅̂) is a weak Pareto-optimal solution for (𝐷), and the objective values of the problems 

(𝐺𝑃𝑀𝑃) and (𝐷) are equal. 

 Proof Since the restrictions of Problem (𝐺𝑃𝑀𝑃) satisfy the Slater condition, therefore from Proposition (3.1), ∃ 

𝑤̅̂, 𝑣̅̂ such that 〈𝑣̅̂, ℎ(𝑢̂)〉 = 0 and  (𝑢̂, 𝑤̅̂, 𝑣̅̂) is feasible for (𝐷).  

 Let the feasible solution (𝑢̂, 𝑤̅̂, 𝑣̅̂) is not an optimal solution for (𝐷), therefore there exists a feasible solution 

(𝑢, 𝑤̂, 𝑣̂) for (𝐷) such that 𝑔(𝑢) > 𝑔(𝑢̂). Which is a contradiction of Theorem (4.2). 

Hence (𝑢̂, 𝑤̅̂, 𝑣̅̂) is a weak Pareto-optimal solution for (𝐷). It is obvious that the objective function values of 

problems (𝐺𝑃𝑀𝑃) and (𝐷) are equal at their respective weak Pareto-optimal solutions. 

Theorem 4.6 (Strong Duality) If (𝑔, ℎ) is quasistrictly-pseudo-Type 𝐼 function at all feasible points 𝑠 of (𝐺𝑃𝑀𝑃) 

with respect to 𝑈 and assume that the restrictions of Problem (𝐺𝑃𝑀𝑃) satisfy the Slater condition. If 𝑢̂ is a weak 

Pareto-optimal solution of (𝐺𝑃𝑀𝑃), then there exists (𝑤̅̂, 𝑣̅̂) ∈ 𝑊̂ × 𝑉̂ such that 

 〈𝑣̅̂, ℎ(𝑢̂)〉 = 0, (𝑢̂, 𝑤̅̂, 𝑣̅̂) is a weak Pareto-optimal solution for (𝐷), and the objective values of the problems 

(𝐺𝑃𝑀𝑃) and (𝐷) are equal. 

 Proof of this theorem is similar to that of theorem (4.4) by using weak duality theorem (4.3). 

5 Conclusions 

In this paper, we have obtained sufficient optimality conditions for (𝐺𝑃𝑀𝑃). We have established some results on 

weak and strong duality between problems (𝐺𝑃𝑀𝑃) and (𝐷). 
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