
International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 12

A GENERALIZED DIGITAL DATABASE TEXT

COMPRESSION SCHEME COMPARED WITH ASCII

Sushil Kumar1, Dr. Anoop Kumar Chaturvedi2
1Research Scholar, LNCTU, Bhopal, 2LNCTU, Bhopal

1Sushil.tit@gmail.cm, 2anoop.chaturvedi77@g mail.com

Abstract- In this paper we investigate that for experimental

result shows the proposed scheme provides significant

improvement in compression efficiencies. The main proposal

of this paper is to reduce the memory space and the

transmission time. We will also produce an experimental

result which shows that our technique achieves good

compression ratios. Reduction of compression ratio collection

of large amount of data in almost all application is very

important. In today’s era without computer application one

can never thinks of database. Whenever database comes

compression plays very important role. Application may be

stock exchange, banking, reservations in almost every field

compression becomes primary things. With the help of

compression one can make very big data in very less memory

space. Disc input and output performance has bottleneck for

very large databases. Database compression can be used to

reduce disk input output bandwidth requirements for very big

amount of data transfers. The authors explores and propose

techniques managing the compressed database such that

standard operations like retrievals, inserts, deletes and

modifications are supported.

Keywords- Compression, Compression Ratio, Delta code,

Differential Method, Fixed Length Coding (FLC), Huffman

after using Fixed Length Code (HFLC), Lossy Compression,

Nonlossy Compression, RLE (Run Length Encoding),

Temporal Database, LZW (Lampel Ziv Welch).

1. INTRODUCTION

DATA Compression can be viewed as a means for efficient

representation of a digital source of data such as text, image,

sound or any combination of all these types such as video. The

final goal of data compression is to represent a source in

digital form with as few bits as possible while getting the

minimum requirement of reconstruction of the original. Any

compression will not work unless a means of decompression is

also provided due to the nature of data compression.

A compression algorithm is often called compressor and the

decompression algorithm is called de-compressor. The

compressor and de-compressor can be located at two ends of a

communication channel, [1] at the source and at the

destination respectively as shown in fig.(1) also known as

coder and decompression as decoder as shown in fig.(2).

Source
file

Compression
Compressed

file

Compressor and Decompressor

Fig. (1)

Compressed
file

Decompression
Decompressed

file

Original Message

Coded Message

CODER

International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 13

There are two major families of compression technique; they

are called lossless and lossy compression. A compression is

lossless only if it is possible to get exactly original data from

the compressed version. There is no loss of information during

the compression process. Fig. (3) will give the exact idea

about lossless compression. Lossless compression is used

when the original data of a source are so important that one

cannot afford to lose any data, for example medical images.

 000001101101100 0001100111001

 AABBBA 3.14

 Lossless Compression Lossy Compression

 Fig. (3) Fig. (4)

A compression technique is lossy if it is not possible to

reconstruct the original exactly from the compressed version.

Lossy compression is called irreversible compression since it

is impossible to recover the original data exactly by

decompression. Fig. (4) shows one of the major used examples

of lossy compression.

DATA Compression is the science and art of representing

information in a compact form [7].

The data may also classified as text, audio, image and video

while the real digital data format consists of 0’s and 1’s in a

binary format

• Text data are usually represented by 8-bit extended

ASCII code or EBCDIC having extension .txt, .tex,

.doc.

• Binary data include data base file spreadsheet data,

excitable files and program codes having extension

as .bin.

• Image data are represented often by a two

dimensional array of pixels in which each pixel is

associated with its color code having extension as

.bmp and .psd.

• Graphics data are in the form of vectors or

mathematical equations, for example data format is

.png (portable network graphics).

• Sound data are represented by a wave function

having extension as .wav [6].

2. BACKGROUND ON TEXT

COMPRESSION TECHNIQUE

Lossy compression achieves better compression by losing

some information. When compressed stream is decompressed,

the result is not identical data stream. Such a method makes

sense especially in compressing images movies or sounds. In

contrast, text files, especially files containing computer

programs, may become worthless if even one bit get modified.

Such files should be compressed only by a lossless

compression method.

A data compression method is called universal if the

compressor and de-compressor or do not know the statistics of

the input strain [12].

There are different compression techniques

 2.1 RLE:

If a data item d occurs n consecutive times in the input stream,

replace the n occurrences with the single pair nd. The n

consecutive occurrences of a data item are called a run length

of n, and this approach to data compression is called run

length encoding or RLE.

The runs are replaced by a tuple (r, l, s) for (run-flag, run-

length, run symbol) respectively, where s is a member of

alphabet of symbols but r and l are not.

For example: String KKKKKKKKK, containing a run of 9 k’s

can be replaced by triple(‘r’,9,’k’), or a sort unit r9k

consisting of the symbol r, 9 and k where r represents the case

of ‘repeating symbol’, 9 means ‘9 times of occurrence’ and k

indicates that this should be interpreted as ‘symbol k’

(repeating 9 times).

Another example

Input is GGG BCDEFG 55GHJK

LM77777.

Compression Compression

Decompression Decompression

 AABBBA 3.1415926

International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 14

Output is r3Gr6n6BCDEFGr2n955GHJK LMr57.

Solution is:

1. For first three G encoded as r3G.

2. Next six space encoded r6.

3. The non-repeating symbols BCDEFG encoded by

n6BCDEFG.

4. Next two spaces r2.

5. Nine non repeated n955GHJK LM.

6. Next five 7’s are encoded by r57.

The mathematical model for Run-Length is so-called Markov

Model [22].

1. If two characters are repeated then there is increase

in size, so in place of compression it becomes expansion in

size.

2. And for three repeated characters there is no

compression.

3. But four onwards there will be actual compression

starts.

The method will be advantageous when repetition is more than

three.

RLE compression data can be further compressed using 5-bits

and 6-bits coding scheme.

2.2 LZW:

LZW is a general compression algorithm capable of working

on almost any type of data. It is generally fast in both

compressing and decompressing data and does not require the

use of floating-point operations. Also LZW writes compressed

data as bytes and not as words.

LZW is referred as a substitution or dictionary-based encoding

algorithm. The algorithm builds a data dictionary (also called

a translation table or string table) of data occurring in an

uncompressed data stream. Patterns of data (substrings) are

identified in the data stream and are matched to entries in the

dictionary. If the substring is not present in the dictionary, a

code phrase is created based on the data content of the

substring, and it is stored in the dictionary. The phrase is then

written to the compressed output stream.

Data Compression technique on text Files: A comparison

study has been done by Haroon Altarawneh et. al., he has

taken different methods of data compression English text files,

LZW, Huffman, Fixed Length Coding (FLC) and Huffman

after using Fixed Length Code (HFLC). He evaluated a test on

these algorithms on different text files or different file sizes

and taken a comparison in terms of comparison: Size, Ratio,

Time (Speed) and entropy. And they found that LZW is the

best algorithm in all the compression scales [25].

According to them LZW is a general compression algorithm

capable of working on almost any type of data. It creates a

table of strings commonly accruing in the data being

compressed, and replaces original data with reference into the

table. LZW Compression replaces strings of characters into a

single code. Compression occurs when a single code is output

instead of a string of characters. It starts with a dictionary of

all the single character with indexes. It starts expanding the

dictionary as information gets send through. Pretty soon,

redundant strings will be coded as a single bit, and

compression has occurred.

The drawback is, Compression usually does not begin until a

sizable table has been built.

They have lastly concluded that LZW is the best in all

compression scale, especially on the large files, than

Huffman, HFLC and FLC respectively. FLC is a good

technique if the source file contains little number of different

symbols (less than 16). Huffman gives better than HFLC and

the second one need more time and more calculations but it is

better than FLC.

3. PROPOSED NEW

TECHNIQUE

• Characters can be coded into 5-bits coding.

• Memo can be coded into 6-bits coding.

• Dates can be coded into 16-bits coding.

• Time can also be coded into 16-bits coding [17].

4. IMPLIMENTATION OF

PROPOSED TECHNIQUE

We have proposed some new techniques that can be

implemented as given below:

4.1 Character

In general 8-bit ASCII code have been used for representing

character, but when one declare any attribute to be of

character type they often interested only in alphabet character

from A-Z or a-z.

So it has redefined the coding in the following way.

International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 15

Table 1. Modified Characters Code for Character Field

DECIMAL CHARACTER DECIMAL CHARACTER

0 NOTHING 16 p

1 a 17 q

2 b 18 r

3 c 19 s

4 d 20 t

5 e 21 u

6 f 22 v

7 g 23 w

8 h 24 x

9 i 25 y

10 j 26 z

11 k 27 SPACE

12 l 28 END OF LINE

13 m 29 COMMA

14 n 30 FULL STOP

15 o 31 ‘ ‘

So in this way a compact and complete representation of

information is possible.

4.2 Memo

The memo field often includes character other than alphabets

like number underscore plus minus etc. and it is found that at

most 61 symbols are used in general so in this situation 6 bits

are sufficient to represent them. Out of these 32 are the same

as that in the previous case of character and the remaining 32

could be used for the following purposes.

Table 2. Modified Characters Code for Memo Field

DECIMAL CHARACTER DECIMAL CHARACTER

32 “ “ 48. &

33 0 49. *

34 1 50. (

35 2 51.)

36 3 52. -

37 4 53. _

38 5 54. =

39 6 55. +

40 7 56. <

41 8 57. >

42 9 58. ?

43 ! 59. /

44 @ 60. :

45 # 61. ;

46 $ 62. |

47 ^ 63. \

So in this way complete information is possible.

5. RESULTS AND EVALUATION

OF PROPOSED TECHNIQUE

We have evaluated our proposed compression techniques on

existing RLE method. Below Table1 has taken some 21 of

different files with their size in number of bits. Then

compressed it with the help of RLE compression and then on

that we applied our methods then one can see our method is

better. Below the table one can see that original size i.e.

ASCII size in bits is 55094077. But the same file size has

been increased to 58054222 bits. And when it comes to our

methods it becomes only 22937800 bits. The same

comparison is also can be seen graphically given below in last

page of this paper. As in table one can see that almost all

cases the size of file is increased when come to RLE

compression. And this is true which we have discussed earlier

in this paper. In the table some files have been taken on that

experiment has been done. In modern database systems table

structure is also stored together with the database file so that

any application can make use of it. When we consider this

compression scheme we will store this structure without any

modification, it is only the data that will be stored according

to this new scheme. The file also store some additional words

like field separator, end of record to mark and distinguish

separate attribute and record, and these will be there in

proportion to the number of records in the file.

Table 3. List of files before Compression and after Compression

File Name ASCII size

(bits)

RLE size

(bits)

After

Compression

Paper1.txt 482978 493899 188675.67

Paper2.txt 103251 114142 44543.87

Paper3.txt 25677 26067 10038.44

Paper4.txt 697867 707952 278734.70

Paper5.txt 985567 999755 399902.00

Paper6.txt 1067865 1853265 741306.00

Paper7.txt 118957 118859 46543.60

Bib.txt 9876789 9987652 3894177.85

Test1.txt 2738527 2927652 1082770.74

Test2.txt 778965 776852 301740.80

Test3.txt 479211 489923 195969.20

Test4.txt 117528 206431 81662.32

Test5.txt 874321 911211 354464.39

Test6.txt 9865421 9974322 3978934.79

Test7.txt 879437 898344 349978.78

Test8.txt 6778943 7001233 2800999.67

News.txt 347954 391221 149976.47

Book1.txt 5674312 6600311 2640007.66

Book2.txt 248968 290142 110077.43

Book3.txt 698437 607421 240997.40

Book4.txt 746389 805072 321919.98

Book5.txt 9778899 9983241 3982176.40

Book6.txt 439567 491010 191303.01

Book7.txt 543268 602477 239990.80

Book8.txt 744979 795768 310908.20

TOTAL 55094077 58054222 22937800

International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 16

6. CONCLUDING REMARK

In our paper we have taken original size of different files. On

that applied RLE technique and then on RLE we applied our

own technique. We have presented a very new compression

technique for Text and Memo. Our technique will give better

results, so that the proposed technique has better performance,

compared to other techniques currently used in the Data-base.

The CPU utilization will also increases due to compression.

Also compression is beneficiate to Input and Output

performance. Database compression is used to reduce the disc

input output bandwidth requirements for bigger data transfer.

The above technique will give 62.5% of compressions. Table

1 and table 2 will have modified chart according to our

technique. Table 3 contains practical data on which our

compression is giving better compression compare to RLE.

Also the graph below can conclude that our compression is

better than RLE technique.

Compression on ASCII to RLE to Our Method

0

2000000

4000000

6000000

8000000

10000000

12000000

P
a
p
e
r1
.tx
t

P
a
p
e
r2
.tx
t

P
a
p
e
r3
.tx
t

P
a
p
e
r4
.tx
t

P
a
p
e
r5
.tx
t

P
a
p
e
r6
.tx
t

P
a
p
e
r7
.tx
t

B
ib
.tx
t

T
e
st
1
.tx
t

T
e
st
2
.tx
t

T
e
st
3
.tx
t

T
e
st
4
.tx
t

T
e
st
5
.tx
t

T
e
st
6
.tx
t

T
e
st
7
.tx
t

T
e
st
8
.tx
t

N
e
w
s.
tx
t

B
o
o
k1
.t
xt

B
o
o
k2
.t
xt

B
o
o
k3
.t
xt

B
o
o
k4
.t
xt

B
o
o
k5
.t
xt

B
o
o
k6
.t
xt

B
o
o
k7
.t
xt

B
o
o
k8
.t
xt

File Name

S
i
z
e

ASCII size (bits)

RLE size (bits)

After Compression

REFERENCES

[1] A.S. Tanenbaum “Computer Network” (Fourth Edition

Prentice-Hall of India Limited).

 [2] Cormack, G. V. 1985. “Data Compression on a Database

System”. Commun. ACM 28 12, (Dec.), 1336-1342.

[3] Debra A. Ielwer and Daniel S. Hirschberg “Data

Compression” –IEEE JUNE 2002.

[4] Navathe S.B ,Elmasn R. “Fundamentals of Database System”

(Pearson Education).

[5] Pujari. A. K “Data Mining Technique” (University Press).

[6] Reghbati, H.K “An Overview of Data Compression

Technique” IEEE computer (1981).

[7] Saloman D. “Data Compression The Complete Reference”

Springer, 3rd Edition (2004).

[8] William Stallings, “Network Security Essentials Application

and Standard” (Pearson Education).

 [9] Holger Kruse, Amar Mukherjee, “Data Compression Using

Text Encryption” FL 32816 Page No. 1068-0314/97 Years

1997 IEEE Department of Computer Science University of

Central Florida Orlando, 32816.

[10] Jianzhong Li and Hong Gao “Efficient Algorithms for On-line

Analysis Processing On Compressed Data Warehouses”

Harbin Institute of Technology, China.

[11] En-hui Yang and John C. Kieffer, “On the Performance of

Data Compression Algorithms Based Upon String Matching”

Fellow IEEE, IEEE TRANSACTIONS ON INFORMATION

THEORY, VOL, 44, NO. 1, JANUARY 1998 0018-9448

1998 IEEE.

[12] Ming-Bo Lin, Member and Yung-Yi Chang, “A New

Architecture of a Two-Stage Lossless Data Compression and

Decompression Algorithm” IEEE TRANSACTIONS ON

VERY LARGE SCALEINTEGRATION (VLSI) SYSTEMS,

VOL, 17, NO, 9, SEPTEMBER 2009 1063-8210 Years 2009

IEEE.

 [13] N. Magotra, W. McCoy’, S. Stearns’ Dept. of EECE, “A

Lossless Data Compression In Real Time F. Livingston.”

University of New Mexico, Albuquerque, NM 87131: Dept,

9311, Sandia National Laboratory, Albuquerque, NM 87185

1058-6393/95 year 1995 IEEE.

[14] Thanos Makatos, Yannis Klonatos, Manolis Marazakis,

Michail D. Flouris, and Angelos Bilas, “ZBD: Using

Transparent Compression at the Block Level to Increase

Storage Space Efficiency”, Foundation for Research and

Technology – Hellas (FORTH), P.O. Box 2208, Heraklion,

GR 71409, Greece, 978-07695-2/10, © 2010 IEEE.

[15] Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, “A New

Architecture of a Two-Stage Lossless Data Compression and

Decompression Algorithm”, 1063-8210, ©2009 IEEE.

[16] Ying Li and Khalid Sayood, “Lossless Video Sequence

Compression Using Adaptive Prediction”, 1057-7149, ©

2007 IEEE

[17] Sushil Kumar, Dr. Sarita S. Bhadauria, Dr. Roopam Gupta,

“A Digital Compression Scheme Using Delta and

Differential Methods”, IJCA (0975-8887) Volume 25 – No.7,

July 2011, page No. 18 – 25.

 [18] Senthil Shanmugasundaram, Robert Lourdusamy, “IIDBE: A

Lossless Text Transform for Better Compression” International

Journal of Wisdom Based Computing, Vol. 1 (2), August

2011, Page No. 1 – 6.

[19] Tanakorn Wichaiwong, Kitti Koonsanit, Chuleerat

Jaruskulchai, “A Simple Approach to Optimized Text

International Journal of Advanced Technology & Engineering Research (IJATER)

 www.ijater.com

ISSN No: 2250-3536 Volume 11, Issue 2, March 2021 17

Compression’s Performance” 4th International Conference

on Web Services Practices, IEEE Computer Society, 978-0-

7695-3455-8/08, Page no. 66 – 70.

[20] M. Baritha Begum, Dr. Y. Venkataramani, “An Efficient Text

Compression for Massive Volume of Data” IJCA (0975 -

8887), Volume 21 – No. 5, May 2011, page No. 5 – 9.

[21] Md. Nasim Akhtar, Md. Mamunur Rashid, Md. Shafiqul Islam,

Mohammod Abul Kashem, Cyrll Y. Kolybanov, “Position

Index Preserving Compression for Text Data” JCS&T Vol. !!

No. 1, April 2011, Page No. 9 – 14.

[22] S. R. Kodituwakku, U.S. Amarasinghe, “Comparison of

Lossless Data Compression Algorithms for Text Data” IJCSE

Vol. 1 No. 4 416-425, ISSN : 0976-5166, Page No. 416-4125.

[23] Rexline S. J, Robert L, “Dictionary Based Preprocessing

Methods in Text Compression – A Survey” IJWBC, Vol. 1 (2),

August 2011, Page No. 13-18.

[24] Umesh S. Bhadade, Prof. A. I. Trivedi, “Lossless Text

Compression using Dictionaries” IJCA (0975 - 8887) Volume

13- No. 8, January 2011, Page No. 27-34.

[25] Haroon Altarawneh, Mohammad Altarawneh, “Data

Compression Techniques on Text Files: A Comparison

Study”, IJCA (0975 - 8887) Volume 26- No.5, july2011.

