
International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 10, Issue 3, May 2020 40

PROGRAMMING AND SIMULATION OF A ROBOT MODEL

USING ROS AND GAZEBO
Bhanu Praharsha Rapelly1, Divya Vajroju2, Shruti Bhargava Choubey3

1,2Department of Electronics and Communication Engineering, Sreenidhi Institute of Science and Technology, 501301, Telangana,

India

3Associate Professor, Department of Electronics and Communication Engineering, Sreenidhi Institute of Science and Technology,

501301, Telangana, India

1bhanurapelly@protonmail.com

2divyavajroju37@gmail.com

3shrutibhargava@sreenidhi.edu.in

Abstract – As the planet evolves into a much more

technologically advanced world, there is a need for

development of much advanced machines to reduce the effort

put in by the mankind. The development of machines is a

large field of work and to test the optimal working and

efficiency of these machines, prototypes are to be modelled

and put through a thorough observation. This process

requires a lot of raw material for building and creating the

environment for the machine to be tested in. An efficient

alternative is virtually simulating the machine along with the

testing environment. For machines like robots, there are many

virtual modelling softwares and simulators available making

the testing process much simple. One such alternative is ROS

– Robot Operating System. It has all the required tools for

modelling, testing and visualizing the robot inside a laptop.

ROS comes with a simulator called Gazebo. Inside gazebo,

one can create a virtual environment – a world, as gazebo

refers it – and deploy robot models for testing. ROS makes it

easy to create a robot model using URDF – Unified Robot

Description Format – an XML based text program that can

model the robot as required. In this paper, creating a custom

modelled robot and deploying it in a “world” is discussed.

Keywords – Gazebo, ROS, simulation, URDF, world, XML.

I. INTRODUCTION

ROS is an open-source, meta-operating system for

your robot. It provides the services you would expect from

an operating system, including hardware abstraction, low-

level device control, implementation of commonly-used

functionality, message-passing between processes, and

package management. ROS is not a real-time framework,

though it is possible to integrate ROS with realtime code
[1]

.

The first commit of ROS code was made to SourceForge

on the seventh of November, 2007 by Willow Garage

members Eric Berger, Keenan Wyrobek and Scott Hassan.

Gazebo was developed in 2002 at the University of

Southern California.

II. ROBOT OPERATING SYSTEM

ROS is made to be open source i.e., it intends

users to choose configuration of tools and libraries as fit for

their need. Hence, there is very little which is core to ROS.

In reality, ROS itself is a greater ecosystem consisting of a

rich set of tools, a wide range of robot-agnostic capabilities

provided by packages. A typical ROS ecosystem consists

of the following:

Nodes – A node is a single process running in

ROS. Every node has a unique name, with which it

registers with the ROS master before taking any action.

Multiple nodes can exist at once and interact with each

other through ROS master. Nodes are at the center of ROS

programming, as most ROS client code is in the form of a

ROS node which takes actions based on information

received from other nodes, sends information to other

nodes, or sends and receives requests for actions to and

from other nodes
[2]

.

Topics - Topics are named buses over which

nodes send and receive messages
 [3]

. One can think of

topics as channels which are connected to nodes through

ROS master. A node receives or sends information by

subscribing or publishing to a topic. The publish/subscribe

model is anonymous: no node knows which node is

sending/receiving on that topic
[4]

.

Services - A node may also advertise services. A

service represents an action that a node can take which will

have a single result. As such, services are often used for

actions which have a defined beginning and end, such as

capturing a single-frame image, rather than processing

velocity commands to a wheel motor or odometer data

from a wheel encoder. Nodes advertise services and call

services from one another
[5]

.

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 10, Issue 3, May 2020 41

Parameter Server - The parameter server is a

database shared between nodes which allows for communal

access to static or semi-static information. Data which does

not change frequently and as such will be infrequently

accessed, such as the distance between two fixed points in

the environment, or the weight of the robot, are good

candidates for storage in the parameter server
[6]

.

ROS master - The ROS Master provides naming

and registration services to the rest of the nodes in the ROS

system. It tracks publishers and subscribers to topics as

well as services. The role of the Master is to enable

individual ROS nodes to locate one another. Once these

nodes have located each other they communicate with each

other peer-to-peer. The Master also provides the Parameter

Server
[7]

.

The Master is most commonly run using the

roscore command, which loads the ROS Master along

with other essential components.

ROS also has a lot of tools which augment its core

functionality. These tools allow developers to visualize,

record data ,create scripts and much more
[8]

. Some are

listed following:

rviz – A three dimensional visualizer used to

visualize robots, environments and sensor data. It is highly

configurable and one can add plugins to increase its

functions.

Figure i. Rviz visualizer

Catkin – It is the ros build system. It is based on

cmake and is cross-platform, open source and language-

independent.

Rosbag – A command line tool used to record and

playback message data sent and received by ROS nodes

over topics in ROS. rqt_bag provides a GUI interface to

rosbag.

Rosbash – A package with a suite of tools

augmenting the functions of bash shell. Some of the tools

are rosls, roscd, roscp which replicate the functionality of

ls, cd, cp respectively in bash.

Roslaunch – A command line tool to launch

multiple ros nodes locally and remotely while setting

parameters on the parameter server. Roslaunch

configuration files are written in XML and can easily

automate a complex startup and configuration into a single

command.

III. URDF OF A BASIC BOT

URDF or Unified Robot Description Format is a

standard designed for representing a robot model in ROS. It

is a package specifically made for ROS and is written in

C++
[9]

. It requires users to specify the robot model in form

of XML code. The code structure is similar to HTML but

has user defined tags for representing certain parts of the

robot. The code usually begins with a line to specify the

XML version being used, followed by the <robot> tag to

denote the robot model. </robot> is the end tag for the file.

The robot model consists of base link, chassis, joints,links,

wheels, sensors etc. A screenshot of a model urdf code of a

two wheeled robot is provided below.

Figure ii. Sample urdf code of a two wheeled

robot model

The XML file of robot description should be

saved with a .xacro extension. This specifies that the file is

an XML file. A simple XML file cannot deploy or launch

the robot model into the simulation environment. The XML

file is to be placed inside a self-created package inside a

workspace created specifically for ROS to operate on. The

following steps are to be executed after installing ROS on a

Linux machine, to create a workspace and a package,and to

launch the robot model
[10]

:

1. Open a terminal window

2. Execute the following command:

 $ mkdir -p catkin_ws/src

 the above command creates a workspace named

catkin_ws and inside that workspace a directory named src

is created.

3. Traverse into the src directory:

 $ cd catkin_ws/src

4. Create a catkin package with a name and a dependency

set to urdf

 $catkin_create_pkg myrobot_description urdf

5. A new directory along with two files pop up. Go into the

newly created package directory and create a new folder

with name “urdf”

 $ mkdir urdf

6. Save the XML file of the robot model into the urdf

directory.

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 10, Issue 3, May 2020 42

7. In the same package, create a new folder named

“launch” to store the launch files used to deploy the robot

model.

 $ mkdir launch

8. Save the launch files into the directory “launch”. Then

move back to the workspace directory.

 $ cd ~/catkin_ws

9. Build the package just created by executing the

following command.

 $ catkin_make

10. Source the workspace to make ROS interact with the

package

 $ source devel/setup.bash

11. Deploy the robot model using roslaunch tool and

launch files

 $ roslaunch myrobot_description rviz.launch

IV. LAUNCH FILES

Launch files are XML files with head and tail tags

<launch> and </launch>. These files are used to run

ROSnodes locally and remotely
[11]

. They are saved in the

launch directory of a package with a .launch extension.

These files automate a complex startup process and remove

the need for opening multiple terminal instances at once on

the monitor. Launch files can be used to run nodes, change

parameters on parameter server and even launch more files

from within. A sample launch file is shown below.

Figure iv. A sample launch file to deploy the robot in rviz

Launch files are a necessary part of the ROS

ecosystem as they initiate the ROS master needed to run

the nodes. One can modify the launch files to deply the

robot model in the rviz or an external simulator like gazebo.

The content of the launch file changes based on the

environment one chooses.

V. GAZEBO

Gazebo is an open-source 3D robotics simulator.

Gazebo was a component in the Player Project from 2004

through 2011. Gazebo integrated the ODE physics engine,

OpenGL rendering, and support code for sensor simulation

and actuator control
[12][13]

. Gazebo development began in

the fall of 2002 at the University of Southern California.

Figure v. Gazebo environment

The original creators were Dr. Andrew Howard and his

student Nate Koenig. The concept of a high-fidelity

simulator stemmed from the need to simulate robots in

outdoor environments under various conditions. As a

complementary simulator to Stage, the name Gazebo was

chosen as the closest structure to an outdoor stage
[14]

.

Over the years, Nate continued development of

Gazebo while completing his PhD. In 2009, John Hsu, a

Senior Research Engineer at Willow, integrated ROS and

the PR2 into Gazebo, which has since become one the

primary tools used in the ROS community.

 A few years later in the Spring of 2011, Willow

Garage started providing financial support for the

development of Gazebo. In 2012, Open Source Robotics

Foundation (OSRF) spun out of Willow Garage and

became the steward of the Gazebo project. After significant

development effort by a team of talented individuals, OSRF

used Gazebo to run the Virtual Robotics Challenge, a

component in the DARPA Robotics Challenge, in July of

2013
[15]

.

It has Client/Server architecture. The inter-process

communication is topic-based Publish/Subscribe
 [16]

.

Gazebo has a native model description format

called SDF – Simulation Description Format. The SDF will

be able to completely describe the simulated world together

with the complete robot model. The process of conversion

is handled by adding so called gazebo-plugins into URDF

file. These plugins can attach into ROS messages and

services to create a complete interface between both ROS

and Gazebo. The examples for using these gazebo-plugins

in URDF and SDF files is provided below
[17]

:

Figure vi. Using gazebo-plugins

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 10, Issue 3, May 2020 43

To deploy a robot model into Gazebo simulator, a

launch file must be written to start the robot model node

and the gazebo server. The below is a screenshot of what a

sample launch file for deploying a robot model into gazebo

looks like:

Figure vii. Sample launch file to deploy robot model into

gazebo environment

Gazebo has a method to create and customize a

virtual environment. These are called worlds. One can

create any number of worlds and use them inside a launch

file to deploy the world and the robot model inside the

world.

VI. RESULTS

Following the above steps, one can create a robot

model meeting all the requirements one has. The created

robot model can be deployed onto any kind of virtual

“world” and the performance and statistical analysis of the

robot model can be observed. Changes to the robot model

can be applied easily. The modular nature of robot model is

very helpful in adding sensors and other components to

capture data and process the same data for other

components needing it.

The robot model we created and customized for

our paper is a two wheeled differential drive robot. The

robot has two wheels at the back and one caster wheel in

the front of the base link. The world we chose is an empty

world without any virtual objects. The screenshot of the

robot deployed in the world is provided below:

Figure viii. Robot model deployed in gazebo

Figure ix. Robot model deployed in rviz

The output observed on the terminal window is

also provided below for clear understanding.

Figure x. Output from the terminal window

References:
 [1] What is ROS? - http://wiki.ros.org/ROS/Introduction

[2] Robot Operating System: Design “Nodes” -

https://en.wikipedia.org/wiki/Robot_Operating_System

[3] "ROS/Tutorials/UnderstandingTopics – ROS Wiki".

wiki.ros.org. Retrieved 29 April 2019.

[4] Robot Operating System: Design “Topics” -

https://en.wikipedia.org/wiki/Robot_Operating_System

[5] ROS/Tutorials/UnderstandingServicesParams – ROS

Wiki. wiki.ros.org. Retrieved 29 April 2019.

[6] ROS/Tutorials/UnderstandingServicesParams – ROS

Wiki. wiki.ros.org. Retrieved 29 April 2019.

[7] Master: Overview - http://wiki.ros.org/Master

[8] Robot Operating System: Tools -

https://en.wikipedia.org/wiki/Robot_Operating_System

[9] http://wiki.ros.org/urdf

[10] https://www.theconstructsim.com/exploring-ros-2-

wheeled-robot-part-01/

[11] http://wiki.ros.org/roslaunch/XML

[12] Gazebo simulator -

https://en.wikipedia.org/wiki/Gazebo_simulator#cite_ref-1

[13] "Gazebo". Gazebo Simulator. Archived from the

original on 2018-01-16. Retrieved 2019-03-24.

[14] History – gazebosim.org

[15] History – gazebosim.org

[16] Kenta Takaya, Toshinori Asai, Valeri Kroumov and

Florentin Smarandache – Simulation Environment for

Mobile Robots Testing Using ROS and Gazebo (ICSTCC

Oct 2016)

[17] Gazebo plugins in ROS. (2016) Tutorial: Using

Gazebo pluginswith ROS. [Online]. Available:

http://gazebosim.org/tutorials?tut=rosgzplugins

https://en.wikipedia.org/wiki/Robot_Operating_System
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
https://en.wikipedia.org/wiki/Robot_Operating_System
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/Master
https://en.wikipedia.org/wiki/Robot_Operating_System
http://wiki.ros.org/urdf
https://www.theconstructsim.com/exploring-ros-2-wheeled-robot-part-01/
https://www.theconstructsim.com/exploring-ros-2-wheeled-robot-part-01/
http://wiki.ros.org/roslaunch/XML
https://en.wikipedia.org/wiki/Gazebo_simulator#cite_ref-1
https://web.archive.org/web/20180116081153/http:/www.gazebosim.org/
http://www.gazebosim.org/
http://www.gazebosim.org/

