
International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 4, Issue 3, May 2014 22

TEST SUIT REDUCTION BY FINDING COST OPTIMAL

REPRESENTATIVE SET
Sudhir Kumar Mohapatra, Research Scholar, SOA University, Bhubaneswar, Odisha , India

Srinivas Prasad, Dept. of Computer Science &Engineering, Gandhi Institute for Technological Advancement, Bhubaneswar, Odisha, India
Bimal Prasad kar, Dept. of Computer Science &Engineering, GIET,Ghangapatna, Bhubaneswar, Odisha, India

Abstract

Software testing is one of the important stages of software

development. In software development, developers always

depend on testing to reveal bugs. In the maintenance stage test

suite size grow because of integration of new technique.

Addition of new technique force to create new test case which

increase the size of test suite. In regression testing new test

case may be added to the test suite during the whole testing

process. These additions of test cases create possibility of

presence of redundant test cases. Due to limitation of time and

resource, reduction techniques should be used to identify and

remove them. Research shows that a subset of the test case in

a suit may still satisfy all the test objectives which is called as

representative set. Redundant test case increase the execution

cost of the test suite, in spite of NP-completeness of the

problem there are few good reduction techniques have been

available. In this paper the previous technique proposed [17] is

improved to find out cost optimal representative set.

Keywords: Genetic Algorithm; Software testing; Test suite

reduction; Representative set;

1. INTRODUCTION

Software testing and retesting is done frequently during the

software development lifecycle and in particular in regression

testing. In regression testing software grows and evolves, that

create new test cases and added them to a test suite to exercise

the latest changes to the software[18]. Over many versions of

the development of the software, test cases in the test suite can

be redundant .The redundant test case may in respect to the

testing requirements for which they were generated, because

these requirements are now also satisfied by new test cases in

the test suite that were newly added to cover changes in the

later versions of software. Due to limitation of time and

resource for retesting the software every time before a new

version is release, it is really important to search for

techniques that ensure manageable test suits size by

periodically removing redundant test cases. This process is

called test suite minimization. The test suite minimization

problem [1] can be formally stated as follows:

Given. A test suite T of test cases {t1,t2,t3,…..,tm}, a set of

testing requirements {r1,r2,r3….,rn} that must be satisfied to

provide the desired test coverage of the program, and subsets

{T1,T2,..,Tn} of T, one associated with each of the ris such

that any one of the tests tj belonging to Ti satisfies ri.

Problem. Find a minimal cardinality subset of T that

exercises all ris exercised by the unminimized test suite T.

The ri‟s can represent either all of the program‟s test case

requirements or those requirements related to program

modifications. A representative set of test cases that satisfies

the ri‟s must contain at least one test case from each Ti. Such a

set is called a hitting set of the group of sets Tl, T2, . . . , T. A

maximum reduction is achieved by finding the smallest

representative set of test cases. However, this subset of the test

suite is the minimum cardinality hitting set of the T,‟s and the

problem of finding the minimum cardinality hitting set is NP-

complete [2]. Therefore, since we are unaware of any

approximate solution to the problem, we develop a heuristic

[3,4] to find a representative set that approximates the

minimum cardinality hitting set.

The development team if able to find out redundant test case

and eliminate them from the test case then the test suite size

can be reduced. while finding the representative set the team

must ensure that all test requirements are satisfied by the

reduced test suite, to make testing more efficient. That is,

given the original test suite T={t1, t2, t3, ..., tn} and a set of

test requirements R={r1, r2, r3, ..., rm}, the goal is to find

a subset of the test suite T, denoted by a representative set

RS, to satisfy all the test requirements satisfied by T. The

process of finding the representative set is called test suite

reduction [5], [6].

 The organization of this paper is as follows. In section 2 we

have specified the Existing Test Case Reduction Techniques.

In section 3 an algorithm based on the genetic algorithm for

test case reduction is proposed and discuss. The proposed

algorithm is discussed in details followed by its

implementation in section 4. In last section the findings of the

paper are summarized.

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 4, Issue 3, May 2014 23

2.RELATED WORK

The Greedy algorithm [9,10] removes the test case

continuously. The algorithm stop when a representative set i.e

RS which covers the entire requirement is derived. In Chen

and Lau [11] algorithm choose all important test case first then

apply greedy algorithm over the remaining test case for rest of

test case selection from that. In [5] Jeffrey and Gupta produce

representative set for test suite reduction using selective

redundancy. Harrold, Gupta and Soffa [1] find representative

test cases for each subset and include them in the

representative set. In [14] the authors use irreplaceability to

evaluate the importance of tests and present an algorithm that

ultimately produces reduced test suites with a substantially

decrease in the execution cost. Using genetic algorithm in

paper [13, 15] the authors are able to minimize test case which

cover the entire requirement that can be covered by all the test

cases. In [17] Prasad and Mohapatra has proposed a genetic

algorithm technique to find representative set.

3. MODIFIED ALGORITHM TO FIND

COST OPTIMAL REPRESENTATIVE

SET

In our previous paper a genetic algorithm based algorithm to

find representative set is proposed. The algorithm is further

modified to find all the representative set and among all

possible representative set we choose that set whose cost is

minimum. Like our previous algorithm the algorithm needs a

test requirement matrix. Test requirement matrix (TR) is a two

dimensional 0-1 matrix of size (m * n). The test suite T={ t1,

t2, t3 …..,tm} is represented in row and the requirement

R={r1, r2,…..,rn} is represented in the column. That is each

row of the matrix represent requirements fulfill by a particular

test case. Entry into the TR matrix is determined by

TR(i,j) =
0 𝑖𝑓 𝑡𝑖 𝑐𝑎𝑛𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑟𝑗
1 𝑖𝑓 𝑡𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑟𝑗

In table no1 a test suite of four test case and their six

requirements are given. Each test case is representing in row

where as the requirement fulfilled by the test case are marked

as 1 in the requirement column otherwise 0. The test case cost

in terms of execution time is given on the last column.

Table no 1: An example of test case, requirements and it

cost

Test

case

Requirements to be satisfied

 C
o
st

No r1 r2 r3 r4 r5 r6

t1 1 1 1 0 0 0 2

t2 0 1 1 1 1 0 5

t3 1 0 0 0 0 1 2

t4 0 0 0 1 1 0 2

t5 1 0 1 0 0 0 1

From Table no 1 the following TR matrix is derived

𝑇𝑅 =

1 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
0 0 1 0 0 1

As for the 0-1 matrix with m rows and n columns, it is

essential to select a subset of rows to cover all of the columns

in the matrix with minimal cost. Suppose the vector element

represents the row i in the vector x is selected and xi=0 means

not, therefore, the set coverage problem can be represented as

standard optimization problem:

Min z(x)= 𝐶𝑖𝑋𝑖
𝑛
𝑖=0

s.t 𝑎𝑖𝑗 𝑥𝑖 𝑖 ≥ 1 ,𝑛
𝑖=0 i=1,2,3,4,……

(Ensure that every column is covered by at least one row)

xj ∈ 0,1 , j=1, 2, 3,……..
The test suite reduction problem is converted to set coverage

problem, and then converted to standard optimization

problem. It is an optimization algorithm that can use genetic
algorithm to solve this reduction problem. The GA based

algorithm is presented in figure1. After generating the entire

representative set by the genetic algorithm process, next job is

to find the one with minimum cost. From the set of RS choose

the RS whose cost is minimum.

FIGURE 1: Optimal representative set generation

algorithm process.

Algorithm Optimal Representative Set

Input T: the set of test cases

 R: the set of requirements

 S: the relation between T and R, S={(t, r)| t

satisfies r, t ϵ T, and r ϵ R}
 rsi: representative set i rsi ϵ RS

 RS: set of representative set

Output : Optimal representative set of T

Begin

RS = { };

i 1

while (no new rs is generated)

 {

 Using GA generate a rsi.

 RS=RS U rsi

i i+1}

Calculate cost of each rs
return optimal RS;

end

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 4, Issue 3, May 2014 24

3.1 Initial Population

Each chromosome of the initial population represents a set of

test case i.e a test suite. The initial population is built up

randomly using the test case pool. We use permutation

encoding for encoding the chromosomes. Each chromosome

contains a set of test case as given in fig 1. The initial

population also store the cost of each chromosome.

FIGURE 2: Chromosome using permutation encoding.

3.2 Selection

We use rank selection to select the chromosome to go to the

next epoch. Elitism is used as test show that best population

are selected.

3.3 Crossover

After the chromosomes are selected we applied single point

crossover with crossover probability of 0.5 to generate new

child from the selected parent.

FIGURE 3: Single Point Crossover.

Let‟s take this example, where P1 and P2 are two individuals
represented as:

P1 = <T1; T3; T6; T4> and P2 = <T2; T3; T5; T9; T4>.

If 1 is chosen, P1 and P2 could be crossed over after the first

locus in each to produce two off springs as P1 =<T1; T3; T5;

T9; T4> and P2=<T2; T3; T6; T4>. A crossover selection

process is depicted in Fig 2.

3.4 Mutation

Mutation is used to replace the duplicate test case present in

the test suite. For duplicate test case the algorithm randomly

select a test case from the existing set that are not included in

the chromosome with a mutation a probability of 0.1.

FIGURE 3: Mutation Operation.

3.5 Fitness value

The fitness value of each chromosome is calculated by

performing and operation among all the requirement sets of

individual test case.

Then fitness the result is converted into a percentage which

denotes how much percentage of requirements is covered by

the chromosome. This percentage is calculated using equation

no 1.

F(x)=
No of requirment fullfill

Total no of requirment
 X 100

 (1)

F(x) is fitness of chromosome x. The following example gives

a clear picture about how it works.

Using the TR matrix, initial population of the algorithm is

generated. The algorithm first generate test suite of size

2,3,4… . The fitness is calculated for these test suite by

performing OR operation of the requirements. For test suite

T={t2,t4}, fitness value will be

So for the said test suite no of requirement not fulfilled is=1.

Total no of requirement =6. Its fitness is

=(1/6*100) =83.33%

t2={ }

t4={ }

OR {0 1 1 1 1 1 }

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 4, Issue 3, May 2014 25

4. EMPIRICAL STUDIES

In order to verify our test suite reduction we take the TR

matrix derived from TABLE1.

TR =

1 1 1 0 0 0
0 1 1 1 1 0
1 0 0 0 0 1
0 0 1 0 0 1

From this we select initial population with chromosome length

l ≥ 2, 3, 4… m where m is the total no of test case present. In

our TR matrix no of test case is 5. The algorithm in each

iteration chooses population of size n X l where n is the

population length. In every iteration GA is applied over the

population. In any iteration if the fitness of one or more

chromosome is 100% our algorithm stops. Out of all the

chromosome produced by the algorithm we choose that

chromosome whose cost is minimum as representative set.

For example by taking population size=5, Pc=0.6, Pm=0.2

from the above TR matrix, we get the following result.

 Iteration # 1

 l=2

Randomly choose 5 chromosomes of length 2 and calculate

their fitness.

FIGURE 4: Initial population with fitness value of our example.

The above example derived representative set {T2,T3} and its

cost is 7 . The algorithm further find RS={T1,T3,T4} with

cost 6. The RS {T1,T3,T4} is chosen as RS in spite of its

length. The test suite T={T2,T3} gives 100% fitness value

that‟s why it is the representative set(RS) of

T={T1,T2,T3,T4,T5}. Hence our algorithm stops after 1st

iteration. For the above example in iteration#1 no cross over

or mutation operation of GA needed. In this case the

representative set is derived in 1 epoch. Otherwise we have to

go for a fixed no of epoch in iteration#1. In the next iteration

chromosome length 2 will be increased to 3 and again GA will

be applied. This process will continue till RS is produce.

The algorithm is implemented in the working platform

MetLab. After getting RS, the test case are run using an

environment of JUnit ,Ant and Eclipse Emma using IDE

Eclipse.

 We use three JAVA program for our study: one is a

„STACK‟ program, and the other is a „LIB‟ program. STACK

consists of 91 and LIB consists of 123 blocks, and either of

them are divided and instrumented by our test tool JUnit. For

STACK, we have 71 test cases in the pool , and for LIB, we

have 38 test cases in the pool. From these test pools, 19

randomly sized, randomly generated test suites, for each

subject program, are extracted. The test suites for STACK

range in size from 5 to 40 test cases, in coverage 65% to 95%

and in test execution cost (mainly considering the runtime)

from 149 to 2398 seconds. The average coverage is 90%. The

test suites from LIB range in size from 5 to 21 test cases, in

coverage 60% to 98% and in test execution cost from 87 to

1984 seconds. The average coverage is 89%. We also execute

the algorithm for Jdepend which show promising result.

FIGURE 5: Comparison of 3 JAVA programs for deriving their

representative set

In FIGURE 5 it can be clearly visualize that after certain no of

test case all new addition to the test suite never increase the

requirement already covered. For this three programs are

selected with each having 50 requirements. Using these

66

83

66

75

100

4

7

3

3

7

T1 T4

T2 T4

T4 T5

T5 T1

T2 T3

Initial Population

Fitness

value

Cost of Each

set

International Journal of Advanced Technology & Engineering Research (IJATER)

www.ijater.com

ISSN No: 2250-3536 Volume 4, Issue 3, May 2014 26

program the GA algorithm give promising result. The test case

size almost reduces to half.

FIGURE 6: Execution time comparison of different RS

In FIGURE 6 represents execution cost comparison of

different RS derived by our algorithm. It is clearly show the

difference between execution time of all the representative set.

We will choose the one with minimum cost.

5. CONCLUSION

In this paper our previous algorithm is modified for finding a

represented set whose execution time is minimum. It finds out

representative set of the test case from the given set of test

case. It uses a simple GA method to reduce the test case in

regression testing. Moreover, the generated test suite is

minimized greatly. Therefore it can reduce test cost of

regression testing and improve the efficiency of the software

with the optimized test suite.

REFERENCES

[1] M.J. Harrold, R. Gupta, and M.L. Soffa, “A

Methodology for Controlling the Size of a Test Suite,”

ACM Trans. Software Eng. And Methodology, vol. 2,

no. 3, pp. 270-285, July 1993.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,

Introduction to Algorithms, second ed. MIT Press, Sept.

2001.

[3] GUPTA, R. A reconfigurable LIW architecture and its
compiler. Tech. Rep. 87-3. Dept. Computer Science,

Univ. Pittsburgh, Pittsburgh, Pa., 1987.

[4] GumA, R., AND SOFFA, M. L. Compile-time

techniques for improving scalar access performance in

parallel memories. IEEE Trans. Parallel and Distributed

Systems 2, 2 (Apr.1991), 138-148.

[5] D. Jeffrey and N. Gupta, “Improving Fault Detection

Capability by Selectively Retaining Test Cases During

Test Suite Reduction,” IEEE Trans. on Software

Engineering, Vol. 33, No. 2, pp. 108-123, February

2007.

[6] J. W. Lin and C. Y. Huang, “Analysis of Test Suite

Reduction with Enhanced Tie-Breaking Techniques,”
Information and Software Technology, Vol. 51, No. 4,

pp. 679-690, April 2009.

[7] M.R. Garey and D.S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. Freeman and Company, 1979.

[8] R. M. Karp, “Reducibility among Combinatorial

Problems,” Complexity of Computer Computations,

Plenum Press, pp. 85-103, 1972.

[9] V. Chvatal, “A Greedy Heuristic for the Set-

Covering Problem,” Mathematics Operations

Research, Vol. 4, No. 3, pp. 233-235, August 1979.

[10] S. Yoo and M. Harman, “Regression Testing
Minimization, Selection and Prioritization: a Survey,”

Software Testing, Verification and Reliability, Vol. 22,

No. 2, March 2012.

[11] T. Y. Chen and M. F. Lau, “A New Heuristic for

Test Suite Reduction,” Information and Software

Technology, Vol. 40, No. 5-6, pp. 347-354, July 1998.

[12] J. A. Jones and M. J. Harrold, “Test-Suite

Reduction and Prioritization for Modified

Condition/Decision Coverage,” IEEE Trans. on

Software Engineering, Vol. 29 No. 3, pp. 195-209,

March 2003.
[13] Ma, X.y., He, Z.f., Sheng, B.k., Ye, C.q.: “A genetic

algorithm for test-suite reduction”. In: Proc. the

International Conference on Systems, Man and

Cybernetics, pp. 133–139, October 2005

[14] Chu-Ti Lin, Kai-Wei Tang, Cheng-Ding Chen, and

Gregory M. Kapfhammer. “Reducing the Cost of

Regression Testing by Identifying Irreplaceable Test

Cases” . In Proc. Of the 6th ICGEC ‟12.

[15] Y Zhang, J Liu, Y Cui, X Hei , ”An improved quantum

genetic algorithm for test suite reduction “,IEEE

International Conference on Computer Science and

Automation Engineering (CSAE), 2011
[16] Dan Hao ,Tao Xie ,Lu Zhang ,XiaoyinWang , Jiasu

Sun , Hong Mei, “Test input reduction for result

inspection to facilitate fault localization” ,Automated

Software Engineering Volume 17, Issue 1 , pp 5-

31, 2010 – Springer

[17] S.K.Mohapatra, S Prasad , “Minimizing Test Cases to

Reduce the Cost of Regression Testing” Proceedings of

the 8th INDIACom; INDIACom-2014

[18] S.K.Mohapatra, S Prasad , “Evolutionary search

algorithm for Test Case Prioritization “ 2013

International Conference on Machine Intelligence
Research and Advancement

1

1

60

 RS1

 RS2

 RS3

Test Case->

T
im

e
->

Representative Set2

Representative Set1

Representative Set3

