Design Coordinated Controller PSS and TCSC for Power Damping Oscillations Using Bacterial Foraging Algorithm

First A. Bahram Khorram (DECEUT); Second B. Hamid Lesani (DECEUT); Third C. Mahmoud-Reza Haghifam (DECEUT)

Abstract

This paper presents an approach for designing power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the single-machine infinite bus for damping low frequency oscillations in a power system using Bacterial Foraging Algorithm (BFA). The problem of robustly PSS and TCSC based damping controller is formulated as an optimization problem according to the eigenvalue-based objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using Bacterial Foraging Optimization (BFA). To ensure the robustness of the proposed stabilizers, the design process takes into account wide range three types of loading light and normal and heavy of operating conditions. The effectiveness of the new controller is demonstrated through eigenvalue analysis studies show that the proposed controller has a good ability in damping power system oscillations.

Introduction

Electromechanical oscillations in power systems are a problem that has been challenging engineers. These oscillations may be very weak damped in some cases, resulting in mechanical fatigue at the machines and Ineligible power variations the across important transmission lines. Therefore, the use of the controllers to provide better damping for these oscillations are of most importance [1]. As power demand grows rapidly and development in transmission and generation is confined with the limited availability of resources and the stringent environmental restrictions, power systems are today much more loaded than before. This causes the power systems to be operated near their stability limits. In addition, interconnection between remotely located power systems gives rise to low frequency oscillations in the range of 0.2–3.0 Hz. If not well damped, these oscillations may keep growing in magnitude until loss of synchronism results [2]. The power systems stabilizers (PSSs) which are widely used for reduction in the effects of low frequency oscillation modes improve the performance and functions of power systems during normal and abnormal operations. The PSSs keep the power system in a safe state and protect it from dangerous phenomena. Lately, several advanced control design approaches based on strong control, adaptive control, optimal control and intelligent control have been developed for power system consolidation and oscillation damping [3-5]. The power transfer in an integrated power system is required by voltage stability, small-signal stability and transient stability. These constraints a full utilization of available transmission lines. Forminimizing the gap between the stability limit and thermal limit, Flexible AC Transmission System (FACTS) is the technology that provides the needed reform of the transmission agency in order to fully utilize the existing transmission equipment [6]. FACTS devices can do by controlling the power flow along the transmission lines and improving power oscillations damping [7-8]. The use of these controllers increases the flexibility of the operation by providing more options to the power system operators. Between the available FACTS devices for transient stability increase, the TCSC is one of the best [9-11]. The TCSC is a series FACTS device which allows rapid and continuous changes of the transmission line impedance. In dynamic application of the TCSC, various control techniques and designs have been proposed for damping power oscillations to improve the system dynamic response [7, 9]. At [7, 12] used fuzzy logic based damping control strategy for TCSC, UPFC and SVC in a multi-machine power system. The damping control strategy employs non-optimal fuzzy logic controllers that is why the system’s response settling time is intolerable. Also, the initial parameters regulation of this type of controller needs some trial and error. Vice versa the other heuristic techniques, it has a flexible and well balanced mechanism to enhance the global and local search abilities. Also, it is enough to specify the objective function and to place limited boundaries on the optimized parameters. The applications of TCSC for power oscillation damping and stability increase can be found in [13]. The power system stability increases with PSS and TCSC based stabilizer when applied independently and also through coordinated application is discussed in [14]. A pole placement technique for PSS and TCSC based stabilizer using simulated annealing (SA) algorithm is presented in [15]. A method for modeling and tuning the parameters of TCSC compensation controller in a multimachine power system to improve system stability using GA is proposed in [16]. The application and performance comparison of PSO and GA optimization techniques, for FACTS based controller design is treated in [17]. A other design procedure for simultaneous coordination designing of the TCSC damping controller and PSS in multimachine power system is developed in [18] using particle swarm optimization (PSO). A novel scheme of damping power system multimode oscillations by using a single FACTS device is illustrated in [19].

In this paper, a Single Machine Infinite Bus (SMIB) power system installed with a TCSC and PSS is considered for case study and BFA is used to design TCSC and PSS controller parameters. The problem of the controller design is formulated as an optimization problem and BFA is used to solve it. The effectiveness of the proposed controller is demonstrated through
I. Bacterial Foraging Algorithm (BFA)

The idea of BFA is based on the fact that natural selection tends to eliminate animals with poor foraging strategies and favor those having successful foraging strategies. After many generations, poor foraging strategies are either eliminated or reshaped into good ones. E. coli bacteria that are present in our intestines have a foraging strategy governed by four processes, namely, chemotaxis, swarming, reproduction, and elimination and dispersal [20].

A. Chemotaxis

This process is achieved through swimming and tumbling. Depending upon the rotation of the flagella in each bacterium, it decides whether it should move in a predefined direction (swimming) or an altogether different direction (tumbling), in the entire life time of the bacterium.

To represent a tumble, a unit length random direction, say, \(\phi(j) \), is generated; this will be used to define the direction of movement after a tumble. In particular

\[
\theta^t(j+1,k,l) = \theta^t(j,k,l) + C(i)\phi(j)
\]

Where \(\theta^t(j,k,l) \) represents the \(j \)th bacterium at \(j \)th chemotactic, \(k \)th reproductive, and \(t \)th elimination and dispersal step. \(C(i) \) is the size of the step taken in the random direction specified by the tumble (run length unit).

B. Swarming

During the process of reaching toward the best food location, it is always desired that the bacterium which has searched the optimum path should try to provide an attraction signal to other bacteria so that they swarm together to reach the desired location. In this process, the bacteria congregate into groups and, hence, move as concentric patterns of groups with high bacterial density. The mathematical representation for swarming can be represented by:

\[
J_{cc}^{i,j}(\theta, P(j,k,l)) = \sum_{i=1}^{S} J_{cc}^{i,j}(\theta, \theta^t(j,k,l))
\]

\[
= \sum_{i=1}^{S} \left[-d_{\text{attract}} \exp(-\omega_{\text{attract}} \sum_{m=1}^{p} (\theta^t_m - \theta^i_m)^2) \right]
\]

\[
= \sum_{i=1}^{S} \left[h_{\text{repellent}} \exp(-\omega_{\text{repellent}} \sum_{m=1}^{p} (\theta^t_m - \theta^i_m)^2) \right]
\]

Where \(J_{cc}^{i,j}(\theta, P(j,k,l)) \) is the cost function value to be added to the actual cost function to be minimized to present a time varying cost function. “S” is the total number of bacteria. “P” is the number of parameters to be optimized that are present in each bacterium. \(d_{\text{attract}}, \omega_{\text{attract}}, h_{\text{repellent}} \), and \(\omega_{\text{repellent}} \) are different coefficients that are present that are to be chosen judiciously.

C. Reproduction

The least healthy bacteria die, and the other healthiest bacteria each split into two bacteria, which are placed in the same location. This makes the population of bacteria constant.

D. Elimination and Dispersal

It is possible that in the local environment, the life of a population of bacteria changes either gradually by consumption of nutrients or suddenly due to some other influence. Events can kill or disperse all the bacteria in a region. They have the effect of possibly destroying the chemotactic progress, but in contrast, they also assist it, since dispersal may place bacteria near good food sources. Elimination and dispersal helps in reducing the behavior of stagnation (i.e., being trapped in a premature solution point or local optima). The detailed mathematical derivations as well as theoretical aspect of this new concept are presented in [20, 21]. (See Appendix A).

II. Power System Model

The single machine infinite bus (SMIB) power system installed with a TCSC, shown in figure 2 is considered in this study.
The Phillips-Heffron model of the SMIB system with PSS and TCSC is obtained using the linearized equations. The corresponding block diagram model is shown in figure 3.

III. Structure of the Proposed Stabilizers

A conventional lead-lag controller structure for both PSS and TCSC as shown in Figs. 4 and 5 and 6 is considered in this study.

The stabilizing signals of the proposed PSS and TCSC can be expressed as:

\[K_{\text{PSS}} = \frac{\partial P_e}{\partial \delta} \cdot K_1 + \frac{\partial P_e}{\partial E_q} \cdot K_2 + \frac{\partial E_q}{\partial \delta} \cdot K_3 + \frac{\partial E_q}{\partial E_p} \cdot K_4 \]

\[K_{\text{TCSC}} = \frac{\partial P_e}{\partial \delta} \cdot K_1 + \frac{\partial P_e}{\partial E_q} \cdot K_2 + \frac{\partial E_q}{\partial \delta} \cdot K_3 + \frac{\partial E_q}{\partial E_p} \cdot K_4 \]

Where:

\[K_1 = \frac{\partial P_e}{\partial \delta}, \quad K_2 = \frac{\partial P_e}{\partial E_q}, \quad K_3 = \frac{\partial E_q}{\partial \delta}, \quad K_4 = \frac{\partial E_q}{\partial E_p} \]

\[K_5 = \frac{\partial V}{\partial \delta}, \quad K_6 = \frac{\partial V}{\partial E_q}, \quad K_7 = \frac{\partial E_q}{\partial \delta}, \quad K_8 = \frac{\partial E_q}{\partial E_p} \]

\[P_e = V_i I_{id} + V_q I_{iq} \]

\[V_i = V_d \cos \phi + j V_q \sin \phi \]

\[I_{id} = I_{id} + I_{Ed} + I_{ld}; \quad I_{iq} = I_{iq} + I_{Eq} + I_{bq} \]

\[X_{d} = \frac{(X - X') \times (E' - V) \times (1 - \cos \beta)}{X_c \times (1 - \cos \beta)} \]

\[X_{c} = \frac{(E' + V \times \sin \delta) \times X_c \times (1 - \cos \beta)}{X_L \times (1 - \cos \beta)} \]

\[X_{d} = \frac{(E' - V \times \cos \delta) \times X_c \times (1 - \cos \beta)}{X_L \times (1 - \cos \beta)} \]

\[X_{c} = \frac{(V_d / V_q) \times (E_d - V_d \times \cos \delta)}{X_d \times (1 - \cos \beta)} \]

\[\Delta \omega = K_{\text{PSS}} \Delta \delta \]

\[\Delta \omega = K_{\text{TCSC}} \Delta \delta \]

\[U_{\text{PSS}} = \frac{\kappa_{\text{PSS}}}{1 + sT_{\text{PSS}}} \left(\frac{1 + sT_{\text{PSS}}}{1 + sT_{\text{PSS}}} \right) \Delta \omega \]

\[U_{\text{TCSC}} = \frac{\kappa_{\text{TCSC}}}{1 + sT_{\text{TCSC}}} \left(\frac{1 + sT_{\text{TCSC}}}{1 + sT_{\text{TCSC}}} \right) \Delta \omega \]

To increase the system damping to the electromechanical modes, the objective function J defined below is proposed.

\[J = \sum \left(\sigma_i - \sigma_i^* \right)^2 \]

Where \(\sigma_i \) is the real part of the i-th eigenvalue and \(\sigma_i^* \) is a chosen threshold. The value of \(\sigma_i^* \) represents the desirable level of system damping. This level can be achieved by shifting the dominant eigenvalues to the left of \(s = \sigma_0 \) line in the s-plane. This insures also some degree of relative stability. The condition \(\sigma_i \geq \sigma_i^* \) is imposed on J evaluation to consider only the unstable or poorly damped modes. The problem constraints are the parameter bounds. Therefore, the design problem can be formulated as the following optimization problem.

Minimize J

Subject to

\[K_{\text{PSS}}^{\text{min}} \leq K_{\text{PSS}} \leq K_{\text{PSS}}^{\text{max}} ; \quad T_{\text{PSS}}^{\text{min}} \leq T_{\text{PSS}} \leq T_{\text{PSS}}^{\text{max}} \]

\[T_{\text{PSS}}^{\text{min}} \leq T_{\text{PSS}} \leq T_{\text{PSS}}^{\text{max}} ; \quad T_{\text{PSS}}^{\text{min}} \leq T_{\text{PSS}} \leq T_{\text{PSS}}^{\text{max}} \]

\[T_{\text{PSS}}^{\text{min}} \leq T_{\text{PSS}} \leq T_{\text{PSS}}^{\text{max}} ; \quad K_{\text{TCSC}}^{\text{min}} \leq K_{\text{TCSC}} \leq K_{\text{TCSC}}^{\text{max}} \]

\[T_{\text{TCSC}}^{\text{min}} \leq T_{\text{TCSC}} \leq T_{\text{TCSC}}^{\text{max}} ; \quad T_{\text{TCSC}}^{\text{min}} \leq T_{\text{TCSC}} \leq T_{\text{TCSC}}^{\text{max}} \]

\[T_{\text{TCSC}}^{\text{min}} \leq T_{\text{TCSC}} \leq T_{\text{TCSC}}^{\text{max}} ; \quad T_{\text{TCSC}}^{\text{min}} \leq T_{\text{TCSC}} \leq T_{\text{TCSC}}^{\text{max}} \]

The minimum and maximum values of the controller gain share set as 0.01 and 100, respectively.

IV. Simulation Results

To assess the effectiveness and robustness of the proposed stabilizers, three different loading conditions given in Table 1 were considered with different disturbances (see Appendix B).

<table>
<thead>
<tr>
<th>Table 1. Loading Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading</td>
</tr>
<tr>
<td>Nominal</td>
</tr>
<tr>
<td>Light</td>
</tr>
<tr>
<td>Heavy</td>
</tr>
</tbody>
</table>

Case1. Step Response for Nominal Load Condition

At these loading conditions, the system eigenvalues with and without the proposed stabilizers are given in Table 2. It is shown that the open loop system is unstable because of the negative damping of electromechanical mode. It is quite clear that the proposed stabilizers are better and shift substantially the electromechanical mode eigenvalue to the left in the s-plane. This enhances greatly the system stability and improves the damping characteristics of electromechanical mode. The system response is shown in Figs. 7-9. It can be seen that the response of PSS&TCSC stabilizer is much faster than other Stabilizers. In addition, the first swing in the torque angle is significantly suppressed and the voltage profile is greatly improved with the proposed PSS&TCSC. Because, the model under study is a linear to evaluate the system response in case of an error, a line parallel to the ground and how the system responds to faults in the presence of TCSC are examined at Figs. 10-12. As can be inferred from Table 2 that the curve of eigenvalues in the presence of TCSC controller electromechanical changes have been damped in the fastest time possible.

![Figure 7. Response of Δω for Nominal Load.](image)

![Figure 8. Response of Δδ for Nominal Load.](image)
Figure 9. Response of ΔV_T for Nominal Load.

Figure 10. Response of $\Delta \delta$ for Fault in Nominal Load.

Figure 11. Response of $\Delta \omega$ for Fault in Nominal Load.

Figure 12. Response of ΔV_T for Fault to Nominal Load.

Table 2. Mechanical Modes Nominal Loading Conditions and Controllers.

<table>
<thead>
<tr>
<th>Without control</th>
<th>With PSS</th>
<th>With TCSC</th>
<th>Fault SMIB with TCSC</th>
<th>With PSS and TCSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-91.2735</td>
<td>-93.0859</td>
<td>-73.1648</td>
<td>-78.8608</td>
<td>-73.1512</td>
</tr>
<tr>
<td>0.0279 + 3.0127i</td>
<td>-3.4515 + 12.0848i</td>
<td>-26.122</td>
<td>-4524 + 3.3662i</td>
<td>-1.9441 + 1.2818i</td>
</tr>
<tr>
<td>0.0279 - 3.0127i</td>
<td>-3.4515 - 12.0848i</td>
<td>-0.1069</td>
<td>-4524 - 3.3662i</td>
<td>-1.9441 - 1.2818i</td>
</tr>
<tr>
<td>-9.1688</td>
<td>-0.1331</td>
<td>-2.5297 + 1.0194i</td>
<td>-2.5218 + 0.0512i</td>
<td>-33.6793</td>
</tr>
<tr>
<td></td>
<td>-0.3940</td>
<td>-2.5297 - 1.0194i</td>
<td>-2.5218 - 0.0512i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.3629</td>
<td>-2.6221 + 0.4400i</td>
<td>-2.6221 - 0.4400i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.6478</td>
<td>-2.6221 - 0.4400i</td>
<td>-2.6221 + 0.4400i</td>
<td></td>
</tr>
</tbody>
</table>

Case 2. Step Response for Light Load Condition

Figs. 13-15, show the system response for a 0.1 step increase in mechanical torque of generator for light loading condition. These figures indicate the capability of the propose coordinated controllers in reducing the settling time and damping power system oscillations. Moreover, this figures demonstrates that the proposed algorithm is outperforms. At these loading conditions, the system eigenvalues with and without the proposed stabilizers are given in Table 3.
Table 3. Mechanical modes Light loading conditions and controllers.

<table>
<thead>
<tr>
<th></th>
<th>Without control</th>
<th>With PSS</th>
<th>With TCSC</th>
<th>Fault with TCSC</th>
<th>With PSS and TCSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-91.4467</td>
<td>-92.3266</td>
<td>-74.7848</td>
<td>-78.7650</td>
<td>-75.0259</td>
<td></td>
</tr>
<tr>
<td>0.1275 + 2.8215i</td>
<td>-3.8614 + 9.7493i</td>
<td>-25.1945</td>
<td>-25.0468</td>
<td>-24.5341</td>
<td></td>
</tr>
<tr>
<td>0.1275 - 2.8215i</td>
<td>0.1336 + 2.8736i</td>
<td>-0.9382 + 9.7666i</td>
<td>-0.9319 + 3.6027i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.1951</td>
<td>-1.0336 - 2.8736i</td>
<td>1.0391 + 1.0243i</td>
<td>1.0391 - 1.0243i</td>
<td>-1.2218</td>
<td></td>
</tr>
<tr>
<td>-0.2565</td>
<td>-0.2594</td>
<td>-1.0391 + 1.0243i</td>
<td>-1.0391 - 1.0243i</td>
<td>-0.4829</td>
<td></td>
</tr>
<tr>
<td>-2.3618</td>
<td>-0.1327</td>
<td>-0.2594</td>
<td>-1.0391 - 1.0243i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.6491</td>
<td>-0.1327</td>
<td>-0.2594</td>
<td>-1.0391 - 1.0243i</td>
<td>-1.2218</td>
<td></td>
</tr>
</tbody>
</table>

Case 3. Step Response for Heavy Load Condition

Figs. 16-18, show the system response at heavy loading condition with fixing the controller parameters. From these figures, it can be seen that the response with the proposed coordinated controllers shows good damping characteristics to low frequency oscillations and the system is more quickly stabilized than PSS and TCSC. At these loading conditions, the system eigenvalues with and without the proposed stabilizers are given in Table 4. Hence, the simulations results reveal that the simultaneous coordinated designing of the TCSC damping controller and the PSS demonstrates its superiority to both the uncoordinated designed controllers of the PSS and the TCSC at large disturbance as shown in Figs.16-18. Also, this controller has a simple architecture and the potentiality of implementation in real time environment.
Conclusions

In this paper, a robust design algorithm for the simultaneous coordinated tuning of the TCSC damping controller and PSS in single machine infinite bus proposed. The design problem of the proposed controllers is formulated as an optimization problem and BFA is employed to search for optimal controllers parameters. Simulations results have shown that the mechanism of BFA allows for faster and more efficient convergence. The eigenvalues analysis and simulation results show that the proposed controller has good performance on damping low frequency oscillations and improves the transient stability under different operating conditions.

Appendix A. Single-Machine Infinite-Bus Power System

System data: All data are in p.u unless specified otherwise.

Generator: M=8.0 ;D=0.0 ;T_d=5.044; X_d=1; X_q=0.5; X'_{q}=0.3.
Exciter: K_A=50; T_A=0.01
Transmission line and transformer: X_L=0.5; X_{TC}=0.0; R=0.0; X_f=0.2.

Appendix B. BFA algorithm parameters are adjusted

dimension of optimization process 5
number of bacteria 2
number of chemotactic step 40
number of swimming step 20
number of reproduction 20
probability index of elimination and dispersal 1
step size for each bacterium 0.09

References

system dynamics. He is a member of IEEE, and a member of the Control and Intelligent Processing Center of Excellency at the University of Tehran. Hamid Lesani may be reached at lesani@ut.ac.ir.

THIRD C. Mahmoud-Reza Haghipafam (M’95–SM’06) was born in Iran in 1967. He received the BS, MSc and PhD degrees in electrical engineering in 1989, 1992 and 1995. He joined Tarbiat Modares University as assistant Prof. in 1965. He is now a Full Professor in Power Systems at the Department of Electrical and Computer Engineering at the University of Tarbiat Modares University (DECETMU), Tehran, Iran. He is a Senior Member of the IEEE (and IEEE Iran Section Industrial relationship officer). Also he is a research Fellow of Alexander Von Humboldt in Germany. He has been awarded by DAAD and AvH in 2001, 2006, 2009 and 2011 for research stays in German universities. He was as visiting Prof. in university of Calgary, Canada in 2003. His main research interests are Power System Restructuring, Power System Reliability, and Electric Distribution System. He has been published more than 100 Journal and 300 conference papers in these fields. Mahmoud-Reza Haghipafam may be reached at haghip@modares.ac.ir.

Biographies

FIRST A. Bahram Khorram He received the B.Sc. degree in Electrical from Islamic Azad University of Abhar branch, Iran, in 2008. He is currently an M.Sc. student at Department of Power Engineering, Islamic Azad University – South Tehran Branch (DPEIAUSTB), Iran. His research interests include application of IEC standards and intelligent methods in, power system dynamics, FACTS devices. Bahram Khorram may be reached at bkhorrarm@isirzanjan.ir.

SECOND B. Hamid Lesani He received an M.S. degree in Electrical Power Engineering from the University of Tehran, Iran, in 1975, and a Ph.D. degree in Electrical Engineering from Dundee University, UK, in 1987. He is currently Professor in the Department of Electrical and Computer Engineering at the University of Tehran (DECEUT). His teaching and research interests include: design and modeling of electrical machines and power