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Abstract— The proliferation of IoT devices heralds the 

emergence of intelligent embedded ecosystems that can 

collectively learn and that interact with humans in a human-

like fashion. Recent advances in deep learning revolutionized 

related fields, such as vision and speech recognition, but the 

existing techniques remain far from efficient for resource-

constrained embedded systems. This dissertation pioneers a 

broad research agenda on Deep Learning for IoT. By 

bridging state-of-the-art IoT and deep learning concepts, I 

hope to enable a future sensor-rich world that is smarter, 

more dependable, and friendlier, drawing on foundations 

borrowed from areas as diverse as sensing, embedded 

systems, machine learning, data mining, and real-time 

computing. Collectively, this dissertation addresses five 

research questions related to architecture, performance, 

predictability and implementation. First, are current deep 

neural networks fundamentally well-suited for learning from 

time-series data collected from physical processes, 

characteristic to IoT applications? If not, what architectural 

solutions and foundational building blocks are needed? 

Second, how to reduce the resource consumption of deep 

learning models such that they can be efficiently deployed on 

IoT devices or edge servers? Third, how to minimize the 

human cost of employing deep learning (namely, the cost of 

data labeling in IoT applications)? Fourth, how to predict 

uncertainty in deep learning outputs? Finally, how to design 

deep learning services that meet responsiveness and quality 

needed for IoT systems? This dissertation elaborates on these 

core problems and their emerging solutions to help lay a 

foundation for building IoT systems enriched with effective, 

efficient, and reliable deep learning models. 
Keyw0rds— Embedded ecosystems, Machine learning, I0T, 

deep neural networks 

I. INTRODUCTION 

Deep learning has recently become immensely popular 

for image recognition, as well as for other recognition and 

pattern matching tasks in, e.g., speech processing, natural 

language processing, and so forth. The online evaluation 

of deep neural networks, however, comes with significant 

computational complexity, making it, until recently, 

feasible only on power-hungry server platforms in the 

cloud. In recent years, we see an emerging trend toward 

embedded processing of deep learning networks in edge 

devices: mobiles, wearables, and Internet of Things (IoT) 

nodes. This would enable us to analyze data locally in real 

time, which is not only favorable in terms of latency but 

also mitigates privacy issues. Yet evaluating the powerful 

but large deep neural networks with power budgets in the 

milliwatt or even microwatt range requires a significant 

improvement in processing energy efficiency. To enable 

such efficient evaluation of deep neural networks, 

optimizations at both the algorithmic and hardware level 

are required. This article surveys such tightly interwoven 

hardware-software processing techniques for energy 

efficiency and shows how implementation driven 

algorithmic innovations, together with customized yet 

flexible processing architectures, can be true game 

changers. To fully understand the implementation 

challenges as well as opportunities for deep neural 

network algorithms, this paper briefly summarizes the 

basic concept of deep neural networks. 

Extracting user behavior and ambient context from 

sensor data is a key enabler for mobile and Internet-of-

Things (IoT) applications. Increasingly, emerging 

networked appliances (e.g., [4, 3]) monitor user activities 

(such as, speech, occupancy, motion) to provide an 

improved user experience. Similarly, for wearables and 

phones the tracking of the user (e.g., [2]) and surrounding 

conditions (e.g., [5]) has long been a core building block. 

Even though sensor applications and systems are highly 

diverse, a prominent unifying element is their need to 

make these types of sensor inferences. Reliably mining 

real-world sensor data for this type of information remains 

an open problem. The world is dynamic and complex; 

such conditions often confuse the signal processing and 

machine learning techniques employed for sensor 

inference. The most promising approach for coping with 

this challenge today is deep learning [9, 14]. Advances in 

this field of machine learning have transformed how many 

inference tasks related to IoT and mobile applications are 

performed (e.g., speech [7] and face [6] recognition). 

Exploration of deep learning for these systems is now 

underway (e.g., [11, 12, 13]), with promising early results. 

Despite its benefits, the adoption of deep learning 

within IoT and mobile hardware face significant barriers 

due to the resource requirements of these algorithms. 

Demands on memory, computation and energy make it 

impractical or most models to directly execute on target 

hardware. As a result, prominent examples of deep 

learning seen on phones (e.g., speech recognition) are 

largely cloud assisted. This introduces important negative 

side-effects: first, it exposes users to privacy dangers [8] 

as sensitive data (e.g., audio) is processed o_-device by a 

third party; and second, the inference execution becomes 
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coupled to fluctuating and unpredictable network quality 

(e.g., latency, throughput). Enabling wide-spread device-

side deep learning inference will require a range of brand-

new techniques for optimized resource sensitive 

execution. Our existing knowledge of deep learning 

algorithm behavior on constrained devices is largely 

limited to one-one task specific experiences (e.g., [1, 10]). 

Such examples only offer a proof-by-example that forms 

of local execution are possible, while providing a few 

pointers for potential directions. What is needed is the 

development of techniques like o_-line model 

optimization and runtime execution environments that 

shape inference-time requirements to match the resources 

available on target wearable, mobile or embedded 

platforms. A cornerstone of such efforts will be a detailed 

understanding of how existing algorithms perform on 

these platforms. Furthermore, systematic observations of 

deep learning runtime behavior (e.g., data/control flow) 

will be pivotal for understanding how to best use 

upcoming hardware accelerators (e.g., [11]) that perform 

key phases of these algorithms (e.g., convolution layers). 

II. DEEP LEARNING IN SENSOR RICH IOT SYSTEMS 

A key research challenge towards the realization of 

learning-enabled IoT systems lies in the design of deep 

neural network structures and basic building blocks that 

can effectively estimate outputs of interest from noisy 

time-series multi-sensor measurements. Despite the large 

variety of embedded and mobile computing tasks in IoT 

contexts, one can generally categorize them into two 

common subtypes: estimation tasks and classification 

tasks, depending on whether prediction results are 

continuous or categorical, respectively. The question 

therefore becomes whether or not a general neural network 

architecture exists that can effectively learn the structure 

of models needed for estimation and classification tasks 

from sensor data. Such general deep learning neural 

network architecture would, in principle, overcome 

disadvantages of today's approaches that are based on 

analytical model simplifications or the use of hand-crafted 

engineered features. 

   Traditionally, for estimation-oriented problems, such as 

tracking and localization, sensor inputs are processed 

based on the physical models of the phenomena involved. 

Sensors generate measurements of physical quantities such 

as acceleration and angular velocity. From these 

measurements, other physical quantities are derived (such 

as displacement through double integration of acceleration 

over time). However, measurements of commodity sensors 

are noisy. The noise in measurements is nonlinear and 

may be correlated over time, which makes it hard to 

model. It is therefore challenging to separate signal from 

noise, leading to estimation errors and bias. For 

classification-oriented problems, such as activity and 

context recognition, a typical approach is to compute 

appropriate features derived from raw sensor data. These 

handcrafted features are then fed into a classifier for 

training. Designing good hand-crafted features can be time 

consuming; it requires extensive experiments to generalize 

well to diverse settings such as different sensor noise 

patterns and heterogeneous user behaviors. 

 
Figure i. Main Architecture of the deep sense network 

This architecture solves the general problem of learning 

multi-sensor fusion tasks for purposes of estimation or 

classification from time-series data. For estimation-

oriented problems, DeepSense learns the physical system 

and noise models to yield outputs from noisy sensor data 

directly. The neural network acts as an approximate 

transfer function. For classification-oriented problems, the 

neural network acts as an automatic feature extractor 

encoding local, global, and temporal information. As a 

unified model, DeepSense can be easily customized for a 

specific IoT application. The application designer needs 

only to decide on the number of sensory inputs, 

input/output dimensions, and the training objective 

function. 

III. DEEP LEARNING IN RESOURCE-CONSTRAINED IOT 

SYSTEMS 

Resource constraints of IoT devices remain an 

important impediment towards deploying deep learning 

models. A key question is therefore whether or not it is 

possible to compress deep neural networks, such as those 

described in the previous section, to a point where they fit 

comfortably on low-end embedded devives, enabling real-

time \intelligent" interactions with their environment. Can 

a unified approach compress commonly used deep 

learning structures, including fully-connected, 

convolutional, and recurrent neural networks, as well as 

their combinations? To what degree does the resulting 

compression reduce energy, execution time, and memory 

needs in practice? We prosed such a compression 

framework, called DeepIoT, which compresses commonly 

used deep neural network structures for sensing 

applications through deciding the minimum number of 

elements in each layer. Previous illuminating studies on 

neural network compression sparsely large dense 

parameter matrices into large sparse matrices [15]. In 

contrast, DeepIoT minimizes the number of elements in 
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each layer, which results in converting parameters into a 

set of small dense matrices. A small dense matrix does not 

require additional storage for element indices and is 

efficiently optimized for processing. DeepIoT greatly 

reduces the effort of designing efficient neural structures 

for sensing applications by deciding the number of 

elements in each layer in a manner informed by the 

topology of the neural network. DeepIoT borrows the idea 

of dropping hidden elements from a widely-used deep 

learning regularization method called dropout. The 

dropout operation gives each hidden element a dropout 

probability. During the dropout process, hidden elements 

can be pruned according to their dropout probabilities.  

A thinned" network structure can thus be generated. 

The challenge is to set these dropout probabilities in an 

informed manner to generate the optimal slim network 

structure that preserves the accuracy of sensing 

applications while maximally reducing their resource 

consumption. An important purpose of DeepIoT is thus to 

find the optimal dropout probability for each hidden 

element in the neural network. 

 
Figure ii. Overall DeepIoT system framework. Orange boxes 

represent dropout operations. Green boxes represent parameters of the 

original neural network. 
DeepIoT greatly reduces the size of model parameters, 

and speeds up the execution time by getting rid of the 

inefficient sparse matrix multiplication. However, a formal 

way to explore the neural network structure design and 

underlying system efficiency is still unclear. Most 

manually designed time-efficient neural network 

structures for mobile devices use parameter size or FLOPs 

(oating point operations) as the indicator of model 

execution time [16-18]. Even the offcial TensorFlow 

website recommends to use the total number of floating 

number operations (FLOPs) of neural networks \to make 

rule-of-thumb estimates of how fast they will run on 

different devices".1 However, in practice, counting the 

number of neural network parameters and the total FLOPs 

does not lead to good estimates of execution time because 

the relation between these predictors and execution time is 

not proportional. We therefore design FastDeepIoT [19], 

showing how a better understanding of the non-

linearrelation between neural network structure and 

performance can further improve execution time and 

energy consumption without impacting accuracy. 

IV. DEEP LEARNING LABLE LIMITED IOT SYSTEMS 

Labeling data is always time-consuming. This laborious 

process has become one key factor that hinders researchers 

and engineers from applying neural networks to sensing 

and recognition tasks on IoT devices. IoT applications 

with a large amount of sensing data therefore call for a 

semi-supervised deep learning framework to solve the 

challenge of limited labeled data.  

In attacking this problem, we propose SenseGAN, a 

semi-supervised deep learning framework for IoT 

applications [20]. One core feature of SenseGAN is its 

capability to leverage unlabeled data for training deep 

learning networks. SenseGAN can run on resource-

constrained IoT devices without additional time or energy 

consumption compared with its supervised counterpart 

after training on workstations. Specifically, we adopt the 

idea of enabling a discriminator to differentiate the joint 

data/label distributions between the real data/label samples 

and the partially generated data/label samples made by 

either the generator or the classifier. Such design can 

easily decouple the functionalities of discriminator and 

classifier into two separate neural networks. For an IoT 

application, users can design their own neural network 

structure for classification and replace the classifier in the 

SenseGAN framework with users' own design for the 

purpose of semi-supervised learning. The adversarial 

game among the discriminator, generator, and classifier 

mutually enhances the performance of all automatically. 

 
Figure iii. The illustration of SenseGAN components 

The intuition of how our SenseGAN framework is able 

to leverage unlabelled data to enhance its predictive power 

is as follows. The discriminator tries to discriminate real 

data/label samples and the partially generated data/label 

samples; the generator attempts to generate and recover 

the real sensing inputs based on the categorical 

information that can fool the discriminator; and the 

classifier tries to predict the label of sensing inputs that 

can both fit the supervision and fool the discriminator. 

During the adversarial game among the three components 

under the training process, the resulting three improved 
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components can mutually boost performance. When the 

training reaches the optimality, the discriminator will have 

learnt the true joint probability distribution of the input 

sensing data and their corresponding labels for both the 

labeled and unlabeled samples. The classifier will have 

learnt the true conditional probability of labels given the 

sensing input. 

All three components are represented by neural 

networks. We will discuss their specific structures for 

dealing with the multimodal sensing inputs in detail in the 

following subsections. In addition, the structure of the 

classifier can be task-specific or unified with diverse IoT 

applications [21]. We therefore will not introduce the 

detailed structure for the classifiers but only discuss its 

output representation. We treat the classifier as an modular 

and customizable component for IoT applications when 

using SenseGAN for semi-supervised learning. 

 
V. CHALLENGES FOR DEEP EMBEDDED INFERENCE 

Both the training of a deep network and its own 

inferences to perform new classifications are now 

typically executed on power-hungry servers and GPUs 

[Figure iv]. There is, however, a strong demand to move 

the inference step, in particular, out of the cloud and into 

mobiles and wearables to improve latency and privacy 

issues [Figure iv]. However, current devices lack the 

capabilities to enable deep inferences for real-life 

applications.  

Recent neural networks for image or speech processing 

easily require more than 100 giga-operations (GOP)/s to 1 

tera-operations (TOP)/s, as well as the ability to fetch 

millions of network parameters (kernel weights and 

biases) per network evaluation. The energy consumed in 

these numerous operations and data fetches is the main 

bottleneck for embedded inference in energy-scarce 

milliwatt or microwatt devices. Currently, 

microcontrollers and embedded GPUs are limited to 

efficiencies of a few tens to hundreds of GOP/W, while 

embedded inference will only be fully enabled with 

efficiencies well beyond 1 TOP/W. Overcoming this 

bottleneck is possible yet requires a tight interplay 

between algorithmic optimization (modifying the network 

topology) and hardware optimization (modifying the 

processing architectures). 

 
VI. CONCLUSION AND DISCUSSION 

We have only scratched the surface of the research 

landscape on Deep Learning for IoT. Fundamentally, 

interest in deep learning will evolve as a means to bridge 

the ever-growing gap between the exponentially 

increasing planet-wide data generation rate on one hand 

(thanks to the proliferation of IoT devices), and the at 

human ability to consume the data, on the other (since our 

cognitive capacity and population do not increase at the 

same exponential rate). Deep learning empowers 

automation that takes the human out of the data processing 

loop and more to a supervisory capacity. 

The past decade witnessed a reemergence of interest in 

deep learning with significant contributions to human-like 

perception modalities including computer vision, natural 

language processing, and speech processing. In the next 

decade, however, growth of IoT device- sourced data will 

significantly outpace the growth of human-sources data, 

due to the proliferation of such devices at rates that far 

outpace human population growth on the planet. As a 

consequence, I envision that a growing research interest 

will shift to modeling and analyzing IoT big data" using 

deep neural networks. This is not only due to the sheer 

volume of data created by the growing number of IoT 

devices, but also due to the unique problem space that IoT 

data offers. IoT data are generated by physical, social, and 

spatio-temporal processes that have different dynamics, 

correlations, and internal structure compared to bits in a 

video, or words in an article. Researchers have gained 

much experience designing neural networks for human-

like perception tasks, inspired by the way our brain 

processes information. 

DeepIoT and FastDeepIoT are frameworks for 

understanding and minimizing neural network execution 

time on mobile and embedded devices. We proposed a 

tree- structured linear regression model to figure out the 

causes of execution-time nonlinearity and to interpret 

execution time through explanatory variables. 

Furthermore, we utilized the execution time model to 

rebalance the focus of existing structure compression 

algorithms to reduce the overall execution time properly. 

SenseGAN separates the functionalities of discriminator 

and classifier into two neural networks, designs specific 

generator and discriminator structures for handling 

multimodal sensing inputs, and stabilizes and enhances the 

adversarial training process by WGAN with gradient 

penalty as well as Gumbel-Softmax for categorical 

representations. The evaluation empirically shows that 

SenseGAN can efficiently leverage both labeled and 

unlabeled data to effectively improve the predictive power 

of the classifier without additional time and energy 

consumption during the inference. Several improvement 

opportunities remain.  
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