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Abstract  
 

 In digital communication employing Multiple Input Multiple 

Output (MIMO), Maximum Likelihood (ML) detection is opti-
mum method to decode received signal vector, if channel matrix 

is known. ML cannot be realized as complexity increases expo-

nentially with the increase in number of antennas and constella-

tion size. Sphere Decoder (SD) is used to achieve the near ML 

performance with polynomial complexity. As many applications 

are modeled as integer least square problems, finding solution 

this problem is equivalent to finding closest lattice point in the 

sphere. Some of the preprocessing methods such as lattice basis 

reduction may be applied before sphere decoding to convert in-

teger least square problem into simple . Among them, Lenstra, 

Lenstra and Lova ́sz (LLL) is a strategic approach to lattice re-
duction. LLL algorithm reduces the complexity by searching 

through less number of paths. The paper proposes to combine 

PTP-SD with lattice basis reduction for complexity reduction. A 

Look Up Table (LUT) is prepared using Radius Choice algo-

rithm for calculation of initial search radius for SD. LUT is used 

to start the search process and SD updates the search radius using 

the PTP algorithm. Simulations are carried out for 4 and 16-

QAM over 4×4 and 8×8 MIMO configurations. The results re-

vealed that the initial search radius of SD reduced by about 35%, 

the average number of Floating Point Operations (FLOPS) re-

duced by 50% as number of nodes visited also decreased, with-

out degrading the performance. 
 

Introduction 
 

 Due to the large available bandwidth on a scattering rich wire-

less channel [2], multiple-input multiple-output (MIMO) system 

has been extensively used in the communication system. MIMO 

uses multiple antennas at both the transmitter and receiver to 

improve the performance of the communication system. It has 
attracted attention in wireless 

communications, because it offers significant increase in data 

throughput without any increase in transmit power. It achieves 

this by spreading the total transmit power over the antennas 

which improves the search process. In this situa-tion, the first 

point obtained by SD is known as Babai point or Zero-Forcing 

Decision Feedback Equalization (ZF-DFE) point. 

 The radius can be updated as the distance between Babai point 

and the received point. Minimum Mean Square Error (MMSE) 

detection is used [8] to obtain the initial point. The two methods 

mentioned above, ensure that there is at least one point inside the 

sphere, but the radii are often too large due to the poor perfor-
mance of ZF spectral efficiency. As the number of transmit an-

tennas and the constellation size increases, the complexity of any 

decoding system increases exponentially. Maximum Likelihood 

Decoding (MLD) is the optimum decoding method. But the ex-

haustive full search makes it unrealizable in a practical system. 

SD is one of the methods to reduce the complexity of MLD 

without sacrific-ing the performance.  

 
 Choosing the initial radius of the sphere and updating its radius 

whenever the required lattice point is not found within the 

sphere, contribute to the complexity of the system. Many algo-

rithms have been proposed to further reduce the complexity of 

SD such as Maximum-Likelihood detection and the search for 

the closest lattice point method [3], Closest point search in lattic-

es method [4], [5], minimum mean square error (MMSE) detec-

tion method [8], Radius Choice Algorithm [1] to set the initial 

radius and Increasing Radii Algorithm (IRA), Probabilistic Tree 

Pruning Sphere Decoding (PTP-SD) algorithms for updating the 

radius. The number of visited nodes determines the complexity 
of SD. This can be reduced by removing the unlikely branches in 

early stage of sphere search. The sphere constraint of the SD 

algorithm offers a loose necessary condition in the early layers of 

search. In [3] and [4] they choose the initial radius for DFE and 

MMSE. Hence, it does not reduce the complexity of SD consi-

derably. In this paper, the PTP-SD algorithm uses the radius se-

lection algorithm to determine the initial search radius. It is pro-

posed that the complexity of the Sphere Decoding can be reduced 

further by combining the PTP-SD algorithm with the radius 

choice algorithm.  

 

 The PTP-SD algorithm uses the radius selection algorithm to 
determine the initial search radius which is obtained from the 

LUT generated. It is shown that a combination of these two algo-

rithms will lead to the significant reduction in the complexity by 

maintaining the same performance. Besides, the proposed me-

thod does not add any additional complexity [1] to SD. The other 

advantage is that the radii can be calculated and stored in a table 

in advance. A particular radius can be obtained in the stage of 

preprocessing by looking up the table according to the SNR at 

any instant of time. 

  

 A powerful preprocessing technique for improving the perfor-
mance of suboptimum data detectors is lattice reduc-tion (LR) 

[17], [18]. The idea behind LR [15], [16] is to transform the 

problem into a domain where the effective channel matrix is bet-

ter conditioned than the original one.  The channel realization is 

regarded as a basis of a lattice, and one attempts to find a better 

(i.e., more orthogonal) basis for the same lattice. Suboptimum 

detectors can then be applied to this better basis, which results in 

improved performance. So far, almost exclusively the LLL algo-
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rithm [19] has been considered for LR-assisted data detection. 

The LLL algorithm allows suboptimum detectors to exploit all of 

the available diversity [20]. 

 

 Since the reduced basis has better mathematical properties like 

smaller orthogonality defect, smaller condition number, 
etc. Solving detection and precoding problems w.r.t the re-duced 

basis offers advantages with respect to performance and com-

plexity. For example, it was shown recently that in some scena-

rios even suboptimum detection/precoding tech-niques can 

achieve full diversity when preceded by LLL lattice reduction as 

in [21–24]. 

 

 Generally speaking, LLL algorithm is able to reduce the com-

putational complexity of sphere decoding by reducing the norm 

of upper triangular matrix R of channel matrix H and by reducing 

the total number of search paths. The tree representation of 

sphere decoding, LLL algorithm can shrink the integer interval at 
each level of the tree. Therefore the number of nodes is reduced 

at each level of the tree. Conse-quently, the search path as well as 

the complexity of sphere decoding is reduced. 

 

 The remainder of the paper is organized as follows. In section 

II, the system model is introduced. In section III, the Radius 

Choice algorithm with PTP-SD algorithm is ex-plained, LLL is 

outlined in section IV. Section V shows with result analysis of 

the proposed method and section VI pro-vides the conclusions. 

 

System model 
 

A. Sphere Decoder 
 

Considering an uncoded MIMO system with M transmit and N 

receive antennas (M N), the received complex signal at each in-

stant time is given by, 

                    cccc nxHMEy  /1                            (1) 

Where cx is the transmitted symbol vector whose components 

are elements of a Quadrature Amplitude Modulation (QAM) 

signal set   with size A. It is assumed that all vectors are trans-

mitted with the same probability. cH  is a complex channel ma-

trix known perfectly to the receiver. cn is a circular symmetric 

complex Gaussian noise vector. E is the average power of the 

transmitted symbol. If the signal to noise ratio is ρ, the variance 

of the component of   is 1/ρ. 
 

 In order to use SD, the complex number signal model in (1) 

needs to be reformulated to a real number signal model as fol-

lows. 
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Where,     and     are the real and imaginary parts of its 

argument. Then the real number signal model is given by 

                                nHxy                                (3) 

Let m = 2 M, n = 2 N, hence, H is a (n × m) real matrix. 

The real MLD is given by, 

                   
2

minargˆ Hxyx                           (4)  

SD reduces the complexity by limiting the search space in a 

hypersphere S(y, √C) centered at y, where C is the squared radius 

of the sphere. SD can be expressed as, 

                          CHxy 
2

                               (5) 

Performing QR-decomposition of H as   TRQQH 0 , 

where R is an m × n upper triangular matrix with positive di-

agonal elements, 0 is a zero matrix, Q and Q’ are an n × m and n 

× (n–m) unitary matrices respectively. The inequality (5) is 

equivalent to,  
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Where yQy T and 
2

0 )( yQCc T  

The sphere radius of d and centered at y can be defined as, 

         dyHxxX  ,                            (9) 

Whose condition is equivalent to, 

                      
22

2
ˆ dyRx                                 (10) 

Where 
2

2
2

22ˆ yQdd T  

Since R is upper triangular, so rewriting the above condition, in 

entry wise as, 
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Where, jir , , j ≥ i denotes the (i,j)th entry of R. The above equa-

tion is expanded to get the equations. 
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The first term in the right side of above equation depends only on 

the mth entry mx  of lattice point s, the second term depends on 

the entries mx  and   1mx , and so on. By solving, we get, 
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Following the above procedure, the intervals for 1mx , 2mx   etc. 

are obtained until 1x  is reached. Then it is able to determine all 

the lattice points in the hyper sphere of radius. 

In the below figure the numbers labeled for each node are the 

path metrics. Note that the dotted nodes are skipped since they 

are outside of sphere constraint. 

 

Initial Radius selection and updating 
 

A. Expected number of points in sphere using 

Radius choice algorithm 
 

In Radius Choice algorithm, the initial radius can be obtained 

corresponding to the expected number of points for particular 

values of SNR. The received symbol vector is denoted as x~ and 

the actual transmitted symbol vector as x 

 
 

Figure 1. Illustration of sphere decoding in a tree. 

Then, 

nHenxxHxHnHxxHy  )~(~~
(14) 

Where xxe ~  is an error symbol vector. Therefore, the 

components of xHy ~ are i.i.d.  eN h

22,0     random 

variables and 
2~xHy  is a scaled chi - squared distribution 

with m degrees of freedom, where 
2

h  is the variance of the 

component of H. When the decoding is perfect,  x~   equals to x, 

so nHxy   is Gaussian random vector whose component is  

 2,0N  random variable. Then when a definite radius C is 

given, we can obtain the probability that the lattice point is in 
the 

sphere,
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Where, 
2 is the co-variance and 

2

h
   is the covariance of com-

ponent of channel matrix H. 

                              6/122
 LM                            (17) 

Where, L
2
 is the QAM constellation,    is the Gamma func-

tion and    is the Cumulative Distributive Function (CDF) of 

chi-square distribution.  Here, form a table of initial radius value 

for any expected number of lattice points for a given value of 

SNR. A sequence of number of points such as D1, D2, D3 and so 

on are considered with constant incremental steps. Then radius 

values C1, C2, C3 and so on respectively using the following 

equations (15), (16) and (18) for a given value of SNR is calcu-

lated. For 16-QAM, the equation for the expected number of 

points is given by, 
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For 16-QAM, the equation for the expected number of points is 
given by, 
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Where,  qgkl is the coefficient of xq in the polynomial 

(1+x+x4+x9)l (1+2x+x4)k-l. . Similar results can be obtained for 

64-QAM and other constellations. The initial radius C1 is chosen 

such that it should eliminate the too-large and the too-small con-

ditions. The too-large condition implies that there are many 

points within the sphere. Hence, the complexity cannot be re-

duced effectively. The too small condition implies that there is 

no lattice point within the sphere which leads to repetitive search 

and hence, increases the complexity. If the search fails with C1, 
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then we start the new search with C2 as the initial radius. If there 

is only one lattice point then the solution will be the ML solution.  

 

   In this paper, it is proposed that the complexity of the PTP-

SD can be reduced further by combining the SD algorithm with 

the radius choice algorithm and performing Lattice reduction 
using LLL algorithm. In PTP-SD algorithm, instead of starting 

the search radius from infinity, the points can be searched from 

the initial radius which is obtained from the LUT. Here it is 

shown that the complexity reduces further with LR techniques, 

maintaining the same performance. 

 

B. Probabilistic Tree Pruning-SD 
 

Inputs:  R, where R is upper triangular matrix , ŷ  is the y re-

duced by the QR decomposition. d, radius of sphere. 

Output:  x or null. 
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Step 6: solution found. Save x and its distance from         y, 

            211,11

2
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            and go to step 3. 

Lattice basis reduction 
 

 Some of the preprocessing methods such as QR decomposition 

and lattice reduction may be applied before sphere decoding to 
transform the integer least squares problem into a simpler form. 

In this approach, it is an attempt to find an invertible m  m ma-

trix M, such that both M and M-l are integer matrices (unimodular 

matrices), and therefore the matrix H M preserves the lattice 

structure. Denote s = M t and G = H M, where M is aforemen-

tioned m  m invertible integer matrix (unimodular matrix), then 
the integer least squares problem in equation (10) becomes 

   
2

2
min yGt

mZt



    (20) 

 Thus, sphere decoding may be applied to equation (20), then it 

is straightforward to solve x by x = Mt. However, the lattice re-
duction approach is itself NP-hard; the famous LLL algorithm is 

a strategic approach to lattice reduction. The LLL algorithm is 

widely used by researchers as a preprocessor to solve the integer 

least squares problem, it is often arguably referred to as an integ-

er Gram-Schmidt procedure. Suppose that QR decomposition is 

applied to the integer least squares problem equation (18) reduc-

es to  

                                  
2

2
ˆmin yRx

mZx



                        (21) 

 Then, apply the LLL algorithm to the upper triangular matrix R 

to decompose R into 

                                   
1ˆˆ  MRQR   (22) 

 Where, Q̂ is orthogonal,  R̂  is upper triangular and M is un-

imodular, so M-1 is an integer matrix. The LLL algorithm trans-

forms a basis formed by the columns of R into a basis formed by 

the columns of R̂ , the lengths of the columns of R̂  are shorter 

than those of R, so that the columns of R̂  form a reduced basis 
for a lattice space. 

 

 A. LLL algorithm 
 

The algorithm inputs are the basis matrix H and the reduc-

tion parameter  . 
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10.  end if 
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11. [Q, R] qr(H) 
 

 LLL algorithm is able to reduce the computational complexity 

of sphere decoding in two ways. First, it can reduce the initial 

radius of the hypersphere by reducing the norm of R. Second, 

since sphere decoding is a depth-first search algorithm for the 

lattice points inside a hypersphere, the LLL algorithm can reduce 
the total number of search paths. Because in the tree representa-

tion of sphere decoding, LLL algorithm can shrink the integer 

interval at each level of the tree, therefore the number of nodes is 

reduced at each level of the tree. Consequently the complexity of 

sphere decoding is reduced. 

 

Simulation results 
 

 In this section, we present the results of simulations for differ-
ent configurations of systems. 

 

A. LUT for initial radius using Radius Choice 

Algorithm 
 Table I is the look up tables for initial radius for the 

combination of expected number of points and the given value of 

SNR. Table I and II are generated using the expression (15), (16) 

and (18). Here it can be seen that D1 is much less than D2 espe-
cially when SNR is high while the difference between two adja-

cent Di ‘ s for i>1 is very small at the entire SNR regime. Here it 

can be observed that, as the SNR increases the initial radius, 

from where the search has to be started, decreases. It can also be 

seen that the initial search radius increases with number of an-

tennas. 

Table 1.Initial radius Look Up Table for 8 X 8 MIMO with 

16-QAM when D=1, 2 …and 5. 

SNR D=1 D=2 D=3 D=4 D=5 

1 51.3389 2.76026 2.93182 3.06126 3.16642 

2 25.6976 2.64259 2.80683 2.93076 3.03143 

3 17.1317 2.60336 2.76517 2.88726 2.98644 

4 12.8347 2.58375 2.74433 2.86550 2.96394 

5 10.2452 2.57198 2.73184 2.85245 2.95044 

6 8.50953 2.56414 2.72350 2.84375 2.94144 

7 7.26169 2.55859 2.71755 2.83754 2.93501 

8 6.31876 2.55437 2.71309 2.83288 2.93019 

9 5.57911 2.55106 2.70962 2.82925 2.92644 

10 4.9815 2.54845 2.70684 2.82635 2.92344 

 

B. Complexity analysis of PTP-SD with radius 

choice algorithm and LLL 

 

 Fig 2 is a plot of number of FLOPS vs. SNR for PTP-SD with 

Radius Choice and lattice reduction. Here the reduction factor   
is selected as 0.25 for LLL algorithm. The simulations are carried 

out for a 4×4 and 8×8 MIMO and for the constellation size of 4-
QAM and 16-QAM. Fig. 3 is a plot of % reduction in average 

number of FLOPS Vs SNR for 8 X 8 MIMO and 16-QAM. Fig. 

2 reveals that the number of FLOPS for PTP-SD with Radius 

Choice algorithm and LLL lattice basis reduction are reduced as 

compared mere PTP-SD. At higher SNR i.e. above 5 dB the re-

duction in the required number of FLOPS is around 50 %. 

 
 Fig. 4 is a plot of average number of nodes visited Vs SNR for 

8 X 8 MIMO and 16-QAM. The graph shows that   

 
 

Figure 2.  The plot of number of FLOPS Vs SNR for 8 X 8 MIMO 

and 16-QAM. 

  
 

Figure 3.  The plot of % reduction in average number of FLOPS Vs 

SNR for 8 X 8 MIMO and 16-QAM. 

 

the number of visited nodes reduced using the lattice reduction 

technique. The graph is plotted over a range of SNRs from 1dB 

to 10dB. The reduction in the visited nodes in turn reduces the 

search paths. Hence leads to the reduction in the complexity. 
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 Fig. 5 is a plot of % reduction in initial search radius Vs SNR 

for 8 X 8 MIMO and 16-QAM. The initial search radius reduces 

by around 35% at higher SNR values i.e. above 5 dB and it re-

mains almost flat from 0 to 5 dB. This gives reduced complexity 

of a sphere decoder with radius choice algorithm and LLL lattice 

basis reduction. 
 

 
 

Figure 4.  The plot of average number of nodes visited Vs SNR for 8 

X 8 MIMO and 16-QAM 

 
 

Figure 5.  The plot of % reduction in initial search radius Vs SNR 

for 8 X 8 MIMO and 16-QAM. 
 

Conclusions 
 

 Sphere Decoder (SD) is used to achieve the near ML perfor-

mance with polynomial complexity. Finding solution to this in-

teger least square problem is equivalent to finding closest lattice 

point in the sphere. The preprocessing methods such as lattice 

basis reduction are applied before sphere decoding to convert 

integer least square problem into simple one. LLL algorithm re-

duces the complexity by searching through less number of paths. 

Here a combination of PTP-SD with lattice basis reduction for 

complexity reduction outperforms mere PTP-SD. A Look Up 

Table (LUT) is generated using Radius Choice algorithm for 
calculation of initial search radius for SD. LUT is used to start 

the search process and SD updates the search radius using the 

PTP algorithm. Here the simulations are carried out for 4 and 16 

QAM over 4 4 and 8 8 MIMO configurations. The results re-
vealed that the initial search radius of SD reduces by around 

35%, the average number of Floating Point Operations (FLOPS) 

reduces by 50%, above 5dB. The performance is unaltered until 

5dB. Consequently the number of nodes visited also decreased, 

in turn reducing the complexity, without degrading the perfor-

mance. 
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