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Abstract 

Forecasts of water inflow into major reservoirs of 

different rivers are needed for the operational planning 

over periods ranging from a few hours to several months 

ahead. Medium-range forecasts of the order of a few days 

to two weeks have usually been obtained by simple 

ARMA-type models, which do not utilize information on 

observed or forecast precipitation, nor stream flow 

observations from upstream gauging stations. Recently, 

several different hydrological models have been tested to 

assess the potential improvements in forecasts that could 

be obtained by using observed and forecast precipitation 

as additional inputs. In this paper we have carried out a 

review of different techniques used for forecasting the 

water flow into various rivers and fore casting the flood 

situation. 

Introduction 

 
The incorporation of quantitative precipitation 

forecasting (QPF) in flood warning systems has been 

acknowledged to play a key role, allowing for an 

extension of the lead-time of the river flow forecast, 

which may enable a more timely implementation of flood 

control [1] (Brath et al., 1988). The QPF integration is 

particularly needed in small and medium-sized 

mountainous basins where, given the short response time 

of the watershed, a precipitation forecast is necessary for 

an extension of the lead-time of the flood warning. It is 

widely recognized that obtaining a reliable QPF is not an 

easy task, rainfall being one of the most difficult elements 

of the hydrological cycle to forecast (e.g. French et al., 

1992), and great uncertainties still affect the performances 

of both stochastic and deterministic rainfall prediction 

models. 

River flow forecasts are required to provide basic 

information for reservoir management in a multipurpose 

water system optimization framework. An accurate 

prediction of flow rates in tributary streams is crucial to 

optimize the management of water resources considering 

extended time horizons. Moreover, runoff prediction is 

crucial in protection from water shortage and possible 

flood damages. 

The rainfall-runoff, process represents a complex 

nonlinear problem and there are several approaches to 

solve it. Traditionally, hydrological simulation modeling 

systems are classified into three main groups, namely, 

empirical black box, lumped conceptual, and distributed 

physically-based models [3, 2]. 

Flooding leads to numerous hazards, with 

consequences including risk to human life, disturbance of 

transport and communication networks, damage to 

buildings and infrastructure, and the loss of agricultural 

crops. Therefore, prevention and protection policies are 

required that aim to reduce the vulnerability of people and 

public and private property. Many solutions for flood 

mitigation and prevention have been suggested however, 

a vast amount of data and knowledge are required about 

the causes and influencing factors of floods and their 

resulting damage. Flood forecasting and prediction 

capabilities evolved slowly during the 1970s and 1980s. 

However, recent technological advances have had a major 

impact on forecasting methodologies. For instance, 

hydrological models use physical detection systems to 

forecast flood conditions based on predicted and/or 

measured parameters [2]. River flow models are used as 

components in actual flood forecasting schemes, where 

forecasts are required to issue warnings and to permit the 

evacuation of populations threatened by rising water 

levels. The basis of such forecasts is invariably 

observation and/or predictions of rainfall in the upper 

catchment area and/or river flows at upstream points 

along main rivers or tributaries. Forecasts about the 

discharge are obtained in real-time, by using the model to 

transform the input functions into a corresponding 

discharge function time [3].  

Given the important role of flood forecasting and that so 

much has been written on the subject, this paper aims to 

provide comprehensive coverage of the status of the 

research work carried out by different researchers. Taking 

a utilitarian viewpoint, we believe that the success of a 

forecasting model lies in its out-of-sample forecasting 

power. It is impossible, in practice, to perform tests on all 

flood forecasting models on a large number of data sets 

and over many different periods. The contribution of this 

review is to provide a bird’s-eye view of the whole 

forecasting literature and to provide some 

recommendations for the practice and future research.  



 
International Journal of Advanced Technology & Engineering Research (IJATER) 

National Conference on Recent Trends in Science, Technology & Management (NCRTSTM-2018) 

© IJATER (NCRTSTM-2018)                                    Volume 01, March 2018                                                          145 

 

Fuzzy-Ranking Algorithm (FRA)   

Identification of significant input variables is one 

of the most important steps in the development of a 

prediction model. To capture the linear or nonlinear 

relationship between the model inputs and outputs, two-

stage Fuzzy-Ranking Algorithm proposed by Lin et al. 

(1998) was used in this study. The fuzzy ranking process 

begins with the construction of fuzzy curves and surfaces 

for each input variable. Let for an output y there are n 

possible input variables, x1, x2, . . . , xn. Each variable 

consists of M data points.  

The single performance index for fuzzy curve 

(PCi) is given as 

PC i = 
  

 
 

     
 

     (1) 

Where   
 

 
 and    

 
 are the first stage and 

second stage performance indices for fuzzy curve 

respectively. 

For fuzzy surface the single performance index 

(PSi,j) is defined as 

PS I,j  =  
  

   
 

       
 

     (2) 

where   
   

 
  and       

 
 are the first and second 

stage performance indices for fuzzy surface, respectively.  

Once the fuzzy curves and surfaces have been 

generated, they are analyzed in order to determine which 

input variables are best able to predict the output variables. 

The FRA uses the performance index to rank the inputs. 

The performance index is a method that involves 

checking the mean square error between the fuzzy curve 

for the variable xi and the output variable y. A small value 

of this performance index indicates that the variable is 

related to the output. A similar approach may also be 

taken for the fuzzy surfaces, which can also give 

information about whether the two variables are 

correlated. The FRA then normalizes the performance 

indices for the fuzzy curves and surfaces. This is carried 

out by computation of fuzzy curves and surfaces for a 

random variable generated by computer program. The 

performance index for the fuzzy curve of xi is divided by 

the performance index of the simulated random variable 

in order to normalize it. Fig. 2 shows the flowchart of the 

FRA used in this study. The FRA applied in this study can 

be summarized in the following steps:  

1. Add a test random variable R to the input set. 

Designate it as xR. 

2. Choose a, 0 < a 6 1 (typically 0:99 < a 6 1). 

3. Generate fuzzy curve list and sort by their 

fuzzy curve performance index (PCi). The variable xj 

with smallest valve of PCi is regarded as the most 

important input variable. Eliminate all variable other than 

the known random variable xR, where PCi=PCR > α from 

additional consideration since they are apparently only 

randomly related to the output. 

4. Use the most important variable from the last step, say 

xj with remaining xk, k ≠ j, to generate fuzzy surface 

(si,j). The input variable xm with the smallest fuzzy 

surface index (Psj,m) is regarded as the next most 

important. Eliminate all variable other than xR where 

Psj;k=Psj;R > alpha or Psj;k=Pcj > α from additional 

consideration. Xm is selected for next significant 

variable. 

5. Repeat step 4 until no more variables can be eliminated. 

    FRA was applied between August rainfall and three 

sets of inputs: 

    (a) Model (a): Climatic indices (SOI and PDOI) with 

lag 1–12 months. 

(b) Model (b): SSTa with lag 1–12 months. 

(c) Model (c): SOI, PDOI and SSTa with lag 1–12 months. 

3.4. Data division approach  

Three different approaches were followed for the division 

of data in training, testing, and validation sets for neural 

network. 

1. Random approach. 

2. Self-organized map (SOM) approach. 

3. Proposed fuzzy c-mean clustering approach. 

A new data division approach is proposed in this paper. 

The proposed data division approach is based on fuzzy c-

means clustering. 

The fuzzy c-means clustering algorithm is based on the 

minimization of an objective function called c-means 

functional. It is defined by Dunn (1973) as: 

J(X;U,V) =  ∑ ∑   
  
   

   
 
    || Xk - vi || A 2  (3) 

where V = [v1; v2; v3; . . . ; vc ]; vi ϵ  Rn is a vector of 

cluster prototypes (centers), which have to be determined, 

and DikA2 =|| Xk - vi|| A2 = (Xk – Vi)TA  (Xk – Vi )  of 

X k from Vi  allows ik in [0,1]. is a squared inner-
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product distance norm. Statistically, (9) can be seen as a 

measure of the total variance of xk from vi. 

A fuzzy partition can be seen as a generalization of a hard 

partition, as it allows ik attaining real values in  [0, 1]. A 

N x c matrix U= [ ik] represents the fuzzy partitions; its 

conditions are given by: 

ik  = [0,1] , 1  ≤  i ≤ N, 1≤ k ≤ c 

 

    ∑ 
  

          

 

   

 

 
  
 =  

 

∑
      

     ⁄

 
     

 
 
   

      

     (4) 

where 1  ≤  i ≤ N, 1≤ k ≤ c  and 

   =  
∑      

  
       

∑      
  

   

   ,  1≤ k ≤ c   

     (5) 

where vi is the cluster center. Once the clusters are 

formed the total information content is computed to 

identify the optimal numbers of clusters. 

Let Cji be ith cluster at jth level (Lj). We measure the Net 

Information Gain (NIG) during the evolution from Li to 

Li+1. The gain or loss of information on cluster j from Li 

to Li+1 is given by: gi = di × Mi     (6) 

where di is the direction (increase or decrease); and Mi is 

the magnitude of change in information. If the offspring 

of cluster j overlap, information is deemed to have been 

lost and di = -1. In contrast, if offspring are clearly 

separated without overlap, information is deemed to have 

been gained and di = -1. The magnitude of information is 

measured using information theory. 

Mj = - ∑     ln        (7) 

where k is the number of offspring of cluster j and Pk is 

the fraction of elements migrated from cluster j to kth 

offspring. Total information content (Ii) is 

Ii = ∑ ∑   
 
   

  
  

      (8) 

The level with largest information content is considered to 

be optimal and the number of cluster corresponding to 

that level is optimal. For optimal number of clusters the 

data set is divided into three subsets (training, testing, and 

validation subsets). For each cluster and each membership 

value interval (interval of 0.0– 0.1; 0.1–0.2; . . . ; 0.9–1) 

two data points (samples) are chosen, one is assign to 

testing set and the other one is assign to validation set. All 

the remaining samples are assigned to training set. If there 

are only two samples then one will be assigned to testing 

and the other one to training. In case there is only one 

sample then it has to be assigned to training set. This data 

division approach can be summarized in following steps: 

1. Initial number of cluster is equal to 1. 

2. The available data set are clustered using fuzzy c-mean 

clustering and the information content of the whole  data 

set is computed. 

3. Increase the number of clusters by 1 and repeat the step 

2 until number of clusters reaches 50% of available data. 

4. The level with maximum information content 

considered as being optimal and number of clusters 

corresponding to that level is optimal number of clusters. 

5. For optimal number of clusters the data set is divided 

into three subsets (training, testing, and validation 

subsets). For each cluster and each membership value 

interval (interval of 0.0–0.1; 0.1–0.2; . . . ; 0.9–1) two data 

points (samples) are chosen, one is assigned to testing set 

and the other one is assigned to validation set. All the 

remaining samples are assigned to training set. If there are 

only two samples then one will be assigned to testing and 

the other one to training. In case there is only one sample 

then it has to be assigned to training set. 

ARMA models   

Most of the time-series techniques traditionally used for 

modeling water resources series fall within 

the framework of the ARMA class of linear stochastic 

processes. They are usually denoted as ARMA (p,q) 

models, where p and q are the auto-regressive and 

moving-average orders, respectively (Box and Jenkins, 

1976; Brockwell and Davis, 1987; Bras and Rodriguez-

Iturbe, 1994). They describe each observation of the time 

series as a weighted sum of p previous data, and the 

current as well as q previous values of a white noise 

process. 

The mean of the time series. Parameter estimation for 

ARMA models can be performed in several ways. We 

applied here an approximation in the spectral domain of 

the Gaussian maximum likelihood function, which was 

first proposed by Whittle (1953) for short-memory 

models. 
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1ARMA model application 

The application of low-order ARMA processes to model 

short-term precipitation values is considered here, 

following the modeling framework proposed by Brath et 

al. (1988) and Burlando et al. (1993). 

The application of ARMA models requires the data to be 

stationary and this is often not the case for hourly rainfall 

observations, whose statistical properties may vary with 

the season. Nonetheless, the limited number of rainfall 

events in the observation period prevented us, in the split-

sample calibration, from grouping the events in monthly 

periods, as it is usually done in hydrology to circumvent 

non-stationary. In the adaptive calibration application, 

non-stationary is accounted for by allowing the model 

parameters to vary with time since the calibration is 

performed solely on the progress of the current event. We 

preferred not to perform any preliminary transformation 

of the data in order to make them as close to Gaussian as 

possible. In fact, Gaussian data are not required for the 

forecast application of ARMA models, since they provide 

the best linear prediction even in the non-Gaussian case 

(Brockwell and Davis, 1987). 

The selection of the model orders, p and q, was driven by 

some results available in literature. Obeysekera et al. 

(1987) determined an equivalence between the correlation 

structure of an ARMA(1,1) model and some point process 

models, like the Poisson rectangular pulses and the 

Neyman–Scott white noise models (see Rodriguez-Iturbe 

et al.,1984). On the other hand, the Neyman–Scott 

rectangular pulses model, which has proved to represent 

the stochastic structure of rainfall better (Rodriguez-Iturbe 

et al., 1987), has a correlation structure equivalent to that 

of an ARMA(2,2) process. In the adaptive calibration, the 

parameters are estimated in correspondence with each 

forecast instant, on the basis of the last values measured 

in real-time. The number of past observations to be used 

for each calibration was chosen on the basis of the results 

of a previous study (Brath et al. 1998). The estimation of 

the parameters was performed there with a number w of 

observations xt immediately preceding each forecast 

instant, with w varying from 7 to 100, aiming at 

identifying the value of w that provides the best 

forecasting performances. The results showed that for 

increasing w, the efficiency 

of the forecast improved moderately for short lead times 

(1–3 h), but a longer set of past data (more than 3 days of 

previous hourly observations) provided a much better 

performance for lead-times longer than 4 h. Thus, we set 

the moving window of past rainfall observations to be 

used in each adaptive calibration equal to the 100 last 

measured hourly observations (that is, w = 100) 

 

The KNN Method   

The K-nearest-neighbor method has its origins as a non-

parametric statistical pattern recognition procedure, 

aiming at distinguishing between different patterns 

according to chosen criteria. Among the various non-

parametric techniques, in the sense that no theoretical or 

analytical relation is known or assumed between the 

inputs and the outputs, it is the most intuitive, but 

nevertheless possesses powerful statistical properties. 

Yakowitz (1987) and Karlsson and Yakowitz (1987a,b) 

did considerable work in extending the K-NN method to 

time-series and forecasting problems, obtaining 

satisfactory results and constructing a robust theoretical 

base for the K-NN method. The intuitiveness of the 

approach and the powerful theoretical basis have made 

the method attractive to forecasters, especially in the 

hydrologic field, where the method found successful 

applications (Karlsson and Yakowitz, 1987a,b; Galeati, 

1990; Kember and Flower, 1993; Todini, 1999). 

The prediction of a time series is based on a local 

approximation, making use of only the nearby 

observations. For each forecast instant t, let           = (X 

t , …… X t-d+1 )              . be a feature vector of past 

records. A feature vector is a vector that summarizes the 

whole past history in a smaller-dimension vector of 

observations supposed to contain most of the information 

relevant to the forecast. The method assumes that the 

probability distribution of the random variable 

conditioned on the entire past .xt+1 / xt ; xt-1;….) ; is the 

same as that of the random variable conditioned on only 

the d past observations  ( xt+1/           : It was proved 

that, even if          does not satisfy the above “history 

summarization” properties, the K-NN forecaster will be 

asymptotically optimal among all the forecasters defined 

on the feature vector        : That is, under fairly general 

circumstances, convergence to the optimal forecaster is 

assured as the historical data set increases (Karlsson and 

Yakowitz, 1987b). Let us indicate the expectation of the 

next value as         ̂, conditioned on the current feature 

vector        :; that is,      ̂              . To estimate 

        ; the K-NN method imposes a metric, denoted by 

|| . ||, on the feature vector        . to find the set of K past 

nearest neighbours of        .; i.e. the K ddimensional 

vectors of past observations:        .; J = 1,…; K; which 

minimise  ||                   ||The most intuitive and 

widely used metric to identify neighbours is the Euclidean 

norm, which, for a d-dimensional vector     = ( Z1, 

Z2 ,…. Zn) in ||     || =   ∑   
  

           

 (9) 

The forecast is then obtained by averaging the temporal 

evolution of the nearest neighbors, assumed to be similar 

to the evolution of the current situation, that is, 
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 ̂    = 
 

 
 ∑      

 
                    (10)  

The generalisation to higher lead-times L is 

straightforward: 

 ̂    = 
 

 
 ∑      

 
                   (11) 

Thus, in our case, the K-NN algorithm looks through all 

consecutive d-dimensional vectors in the entire historical 

rainfall depths database and locates K of these d-ples, 

which are closest to the vector of d most recent rainfalls. 

The prediction of the next rainfall is then taken to be the 

average of the rainfall subsequent to these K historical 

nearest neighbors. It may be noticed that the K-NN 

approach does not require the selection of a class of 

models and the estimation of the model parameters, so 

that the identification of a specific form of the 

input/output relationship is not needed. 
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